The dataset consists of drive cycle power profile calculated for an electric Ford F150 truck with a 35kWh battery pack scaled for a single Panasonic 18650PF cell at 25 degree Celcius.
import pandas as pd
data = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/Projects/SOC & SOE Estimation/Dataset/dataset_SOC.csv')
data
Voltage (V) | Current (A) | Ah | Wh | Power (W) | Temp (C) | Time(s) | Chamber_Temp (C) | |
---|---|---|---|---|---|---|---|---|
0 | 4.1819 | -0.01062 | 0.00000 | 0.00000 | -0.044412 | 25.619 | 0.00000 | 25 |
1 | 4.1806 | -0.05063 | 0.00000 | -0.00001 | -0.211660 | 25.619 | 0.09500 | 25 |
2 | 4.1799 | -0.06125 | 0.00000 | -0.00001 | -0.256020 | 25.418 | 0.19100 | 25 |
3 | 4.1793 | -0.06533 | 0.00000 | -0.00002 | -0.273030 | 25.418 | 0.29700 | 25 |
4 | 4.1793 | -0.06615 | -0.00001 | -0.00003 | -0.276460 | 25.429 | 0.39599 | 25 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
116977 | 3.3534 | 0.00000 | -2.54960 | -8.63840 | 0.000000 | 27.480 | 11733.00000 | 25 |
116978 | 3.3534 | 0.00000 | -2.54960 | -8.63840 | 0.000000 | 27.480 | 11733.00000 | 25 |
116979 | 3.3534 | 0.00000 | -2.54960 | -8.63840 | 0.000000 | 27.480 | 11733.00000 | 25 |
116980 | 3.3527 | 0.00000 | -2.54960 | -8.63840 | 0.000000 | 27.267 | 11733.00000 | 25 |
116981 | 3.3527 | 0.00000 | -2.54960 | -8.63840 | 0.000000 | 27.267 | 11733.00000 | 25 |
116982 rows × 8 columns
import matplotlib.pyplot as plt
%matplotlib inline
plt.figure(figsize=(7,7))
plt.plot(data['Time(s)'], data['Voltage (V)'])
plt.title('Voltage Vs. Time')
plt.xlabel('Time (s)')
plt.ylabel('Voltage (V)')
plt.show()
plt.figure(figsize=(7,7))
plt.title('Energy Discharge Curve')
plt.xlabel('Time (s)')
plt.ylabel('Energy Remaining (Wh)')
plt.plot(data['Time(s)'], data['Wh']+9.9)
plt.show()
plt.figure(figsize=(7,7))
plt.title('Charge Discharge Curve')
plt.xlabel('Time (s)')
plt.ylabel('Charge Remaining (Ah)')
plt.plot(data['Time(s)'], data['Ah']+2.9)
plt.show()
For the estimation of SOC, we only require the volage, charging/ discharging current, and the temperature of the battery.
For the estimation of SOE, we will require volatage, chargin/ discharging current, temparature, and SOC.
data.drop(['Power (W)', 'Time(s)', 'Chamber_Temp (C)'], axis=1, inplace=True)
data
Voltage (V) | Current (A) | Ah | Wh | Temp (C) | |
---|---|---|---|---|---|
0 | 4.1819 | -0.01062 | 0.00000 | 0.00000 | 25.619 |
1 | 4.1806 | -0.05063 | 0.00000 | -0.00001 | 25.619 |
2 | 4.1799 | -0.06125 | 0.00000 | -0.00001 | 25.418 |
3 | 4.1793 | -0.06533 | 0.00000 | -0.00002 | 25.418 |
4 | 4.1793 | -0.06615 | -0.00001 | -0.00003 | 25.429 |
... | ... | ... | ... | ... | ... |
116977 | 3.3534 | 0.00000 | -2.54960 | -8.63840 | 27.480 |
116978 | 3.3534 | 0.00000 | -2.54960 | -8.63840 | 27.480 |
116979 | 3.3534 | 0.00000 | -2.54960 | -8.63840 | 27.480 |
116980 | 3.3527 | 0.00000 | -2.54960 | -8.63840 | 27.267 |
116981 | 3.3527 | 0.00000 | -2.54960 | -8.63840 | 27.267 |
116982 rows × 5 columns
The given values in "Ah" column shows the amount of amp-hour discharge from the battery with time. So, by adding the nominal amp-hour i.e. 2.9Ah, to all the values and dividing it again by 2.9Ah we will get out our target variable, SOC.
Similarly, the given values in "Wh" column shows the amount of watt-hour discharge from the battery with time. Panasonic 18650PF has a maximum energy capacity of 9.9Wh. So, by adding the maximum energy capacity to all the values and dividing it again by 9.9Wh, we will get our other target variable, SOE.
#Making sure that no column has missing values
data.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 116982 entries, 0 to 116981 Data columns (total 5 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Voltage (V) 116982 non-null float64 1 Current (A) 116982 non-null float64 2 Ah 116982 non-null float64 3 Wh 116982 non-null float64 4 Temp (C) 116982 non-null float64 dtypes: float64(5) memory usage: 4.5 MB
data['SOC'] = (data['Ah'] + 2.9)/2.9
data['SOE'] = (data['Wh']+9.9)/9.9
data.drop(['Ah', 'Wh'], axis=1, inplace=True)
data
Voltage (V) | Current (A) | Temp (C) | SOC | SOE | |
---|---|---|---|---|---|
0 | 4.1819 | -0.01062 | 25.619 | 1.000000 | 1.000000 |
1 | 4.1806 | -0.05063 | 25.619 | 1.000000 | 0.999999 |
2 | 4.1799 | -0.06125 | 25.418 | 1.000000 | 0.999999 |
3 | 4.1793 | -0.06533 | 25.418 | 1.000000 | 0.999998 |
4 | 4.1793 | -0.06615 | 25.429 | 0.999997 | 0.999997 |
... | ... | ... | ... | ... | ... |
116977 | 3.3534 | 0.00000 | 27.480 | 0.120828 | 0.127434 |
116978 | 3.3534 | 0.00000 | 27.480 | 0.120828 | 0.127434 |
116979 | 3.3534 | 0.00000 | 27.480 | 0.120828 | 0.127434 |
116980 | 3.3527 | 0.00000 | 27.267 | 0.120828 | 0.127434 |
116981 | 3.3527 | 0.00000 | 27.267 | 0.120828 | 0.127434 |
116982 rows × 5 columns
from sklearn.model_selection import train_test_split
# data = data.sample(frac=1)
Y_SOC = data['SOC']
Y_SOE = data['SOE']
X_SOC = data.drop(['SOC', 'SOE'], axis=1)
X_SOE = data.drop(['SOE'], axis=1)
X_train_SOC, X_test_SOC, Y_train_SOC, Y_test_SOC = train_test_split(X_SOC, Y_SOC, train_size=0.8, random_state=1)
X_train_SOE, X_test_SOE, Y_train_SOE, Y_test_SOE = train_test_split(X_SOE, Y_SOE, train_size=0.8, random_state=1)
X_train_SOC.reset_index(level=None, drop=True, inplace=True, col_level=0, col_fill='')
X_test_SOC.reset_index(level=None, drop=True, inplace=True, col_level=0, col_fill='')
Y_train_SOC.reset_index(level=None, drop=True, inplace=True)
Y_test_SOC.reset_index(level=None, drop=True, inplace=True)
X_train_SOE.reset_index(level=None, drop=True, inplace=True, col_level=0, col_fill='')
X_test_SOE.reset_index(level=None, drop=True, inplace=True, col_level=0, col_fill='')
Y_train_SOE.reset_index(level=None, drop=True, inplace=True)
Y_test_SOE.reset_index(level=None, drop=True, inplace=True)
X_train_SOC
Voltage (V) | Current (A) | Temp (C) | |
---|---|---|---|
0 | 3.3558 | -5.76610 | 27.502 |
1 | 3.8197 | -1.36620 | 27.312 |
2 | 4.0894 | 0.02613 | 27.290 |
3 | 3.5475 | -0.71046 | 27.301 |
4 | 3.6802 | 2.51700 | 27.088 |
... | ... | ... | ... |
93580 | 3.7740 | -0.07431 | 27.525 |
93581 | 3.4870 | -0.08003 | 28.556 |
93582 | 4.0777 | -0.85908 | 26.673 |
93583 | 3.7658 | 5.88980 | 26.662 |
93584 | 3.4853 | 0.64598 | 28.343 |
93585 rows × 3 columns
X_train_SOE
Voltage (V) | Current (A) | Temp (C) | SOC | |
---|---|---|---|---|
0 | 3.3558 | -5.76610 | 27.502 | 0.394000 |
1 | 3.8197 | -1.36620 | 27.312 | 0.759348 |
2 | 4.0894 | 0.02613 | 27.290 | 0.922900 |
3 | 3.5475 | -0.71046 | 27.301 | 0.389414 |
4 | 3.6802 | 2.51700 | 27.088 | 0.435828 |
... | ... | ... | ... | ... |
93580 | 3.7740 | -0.07431 | 27.525 | 0.627759 |
93581 | 3.4870 | -0.08003 | 28.556 | 0.255621 |
93582 | 4.0777 | -0.85908 | 26.673 | 0.955103 |
93583 | 3.7658 | 5.88980 | 26.662 | 0.428759 |
93584 | 3.4853 | 0.64598 | 28.343 | 0.250379 |
93585 rows × 4 columns
import seaborn as sns
plt.figure()
sns.heatmap(X_train_SOC.corr(method='pearson'), annot=True)
plt.show()
plt.figure()
sns.heatmap(X_train_SOE.corr(method='pearson'), annot=True)
plt.show()
# Importing the necessary libraries
import numpy as np
from scipy.stats import norm
plt.figure(figsize=(6,6))
plt.hist(X_train_SOC['Voltage (V)'], bins=30, rwidth=0.8)
plt.show()
rng = np.arange(X_train_SOC['Voltage (V)'].min(), X_train_SOC['Voltage (V)'].max(), 0.01)
plt.plot(rng, norm.pdf(rng, X_train_SOC['Voltage (V)'].mean(), X_train_SOC['Voltage (V)'].std()))
plt.show()
Removing all the data points with a z-score of greater than 3 or less than -3
X_train_SOC['voltage_z_score'] = (X_train_SOC['Voltage (V)'] - X_train_SOC['Voltage (V)'].mean())/X_train_SOC['Voltage (V)'].std()
to_be_included = ((X_train_SOC['voltage_z_score']>-3) & (X_train_SOC['voltage_z_score']<3))
X_train_SOC = X_train_SOC[to_be_included]
X_train_SOE = X_train_SOE[to_be_included]
Y_train_SOC = Y_train_SOC[to_be_included]
Y_train_SOE = Y_train_SOE[to_be_included]
X_train_SOC.reset_index(level=None, drop=True, inplace=True, col_level=0, col_fill='')
Y_train_SOC.reset_index(level=None, drop=True, inplace=True)
X_train_SOE.reset_index(level=None, drop=True, inplace=True, col_level=0, col_fill='')
Y_train_SOE.reset_index(level=None, drop=True, inplace=True)
X_train_SOC.drop(['voltage_z_score'], axis=1, inplace=True)
plt.figure(figsize=(6,6))
plt.hist(X_train_SOC['Current (A)'], bins=30, rwidth=0.8)
plt.show()
rng = np.arange(X_train_SOC['Current (A)'].min(), X_train_SOC['Current (A)'].max(), 0.01)
plt.plot(rng, norm.pdf(rng, X_train_SOC['Current (A)'].mean(), X_train_SOC['Current (A)'].std()))
plt.show()
Removing all the data points with a z-score of greater than 3 or less than -3
X_train_SOC['current_z_score'] = (X_train_SOC['Current (A)'] - X_train_SOC['Current (A)'].mean())/X_train_SOC['Current (A)'].std()
to_be_included = ((X_train_SOC['current_z_score']>-3) & (X_train_SOC['current_z_score']<3))
X_train_SOC = X_train_SOC[to_be_included]
X_train_SOE = X_train_SOE[to_be_included]
Y_train_SOC = Y_train_SOC[to_be_included]
Y_train_SOE = Y_train_SOE[to_be_included]
X_train_SOC.reset_index(level=None, drop=True, inplace=True, col_level=0, col_fill='')
Y_train_SOC.reset_index(level=None, drop=True, inplace=True)
X_train_SOE.reset_index(level=None, drop=True, inplace=True, col_level=0, col_fill='')
Y_train_SOE.reset_index(level=None, drop=True, inplace=True)
X_train_SOC.drop(['current_z_score'], axis=1, inplace=True)
plt.figure(figsize=(6,6))
plt.hist(X_train_SOC['Temp (C)'], bins=30, rwidth=0.8)
plt.show()
rng = np.arange(X_train_SOC['Temp (C)'].min(), X_train_SOC['Temp (C)'].max(), 0.01)
plt.plot(rng, norm.pdf(rng, X_train_SOC['Temp (C)'].mean(), X_train_SOC['Temp (C)'].std()))
plt.show()
Removing all the data points with a z-score of greater than 3 or less than -3
X_train_SOC['temp_z_score'] = (X_train_SOC['Temp (C)'] - X_train_SOC['Temp (C)'].mean())/X_train_SOC['Temp (C)'].std()
to_be_included = ((X_train_SOC['temp_z_score']>-3) & (X_train_SOC['temp_z_score']<3))
X_train_SOC = X_train_SOC[to_be_included]
X_train_SOE = X_train_SOE[to_be_included]
Y_train_SOC = Y_train_SOC[to_be_included]
Y_train_SOE = Y_train_SOE[to_be_included]
X_train_SOC.reset_index(level=None, drop=True, inplace=True, col_level=0, col_fill='')
Y_train_SOC.reset_index(level=None, drop=True, inplace=True)
X_train_SOE.reset_index(level=None, drop=True, inplace=True, col_level=0, col_fill='')
Y_train_SOE.reset_index(level=None, drop=True, inplace=True)
X_train_SOC.drop(['temp_z_score'], axis=1, inplace=True)
import tensorflow as tf
import keras
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout
from sklearn.metrics import mean_absolute_error
cols_to_be_normalized = ['Voltage (V)', 'Current (A)', 'Temp (C)']
for e in cols_to_be_normalized:
mean = X_train_SOC[e].mean()
std = X_train_SOC[e].std()
X_train_SOC[e] = (X_train_SOC[e]-mean)/std
X_train_SOE[e] = (X_train_SOE[e]-mean)/std
X_test_SOC[e] = (X_test_SOC[e]-mean)/std
X_test_SOE[e] = (X_test_SOE[e]-mean)/std
model_SOC = Sequential()
model_SOC.add(Dense(units=5, activation='relu', input_dim=len(X_train_SOC.columns)))
model_SOC.add(Dense(units=5, activation='relu'))
model_SOC.add(Dense(units=1, activation='linear'))
es = tf.keras.callbacks.EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=50)
opt = keras.optimizers.Adam(0.001)
model_SOC.compile(loss='mse', optimizer=opt, metrics='mse')
model_SOC.summary()
Model: "sequential_2" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense_6 (Dense) (None, 5) 20 _________________________________________________________________ dense_7 (Dense) (None, 5) 30 _________________________________________________________________ dense_8 (Dense) (None, 1) 6 ================================================================= Total params: 56 Trainable params: 56 Non-trainable params: 0 _________________________________________________________________
model_SOC.fit(X_train_SOC, Y_train_SOC, epochs=700, batch_size=512, validation_split=0.2, validation_data=None, verbose=1, callbacks=[es])
Epoch 1/700 142/142 [==============================] - 1s 3ms/step - loss: 0.1408 - mse: 0.1408 - val_loss: 0.0400 - val_mse: 0.0400 Epoch 2/700 142/142 [==============================] - 0s 2ms/step - loss: 0.0220 - mse: 0.0220 - val_loss: 0.0111 - val_mse: 0.0111 Epoch 3/700 142/142 [==============================] - 0s 2ms/step - loss: 0.0073 - mse: 0.0073 - val_loss: 0.0045 - val_mse: 0.0045 Epoch 4/700 142/142 [==============================] - 0s 2ms/step - loss: 0.0033 - mse: 0.0033 - val_loss: 0.0024 - val_mse: 0.0024 Epoch 5/700 142/142 [==============================] - 0s 2ms/step - loss: 0.0020 - mse: 0.0020 - val_loss: 0.0016 - val_mse: 0.0016 Epoch 6/700 142/142 [==============================] - 0s 2ms/step - loss: 0.0013 - mse: 0.0013 - val_loss: 0.0011 - val_mse: 0.0011 Epoch 7/700 142/142 [==============================] - 0s 2ms/step - loss: 0.0010 - mse: 0.0010 - val_loss: 9.0419e-04 - val_mse: 9.0419e-04 Epoch 8/700 142/142 [==============================] - 0s 2ms/step - loss: 8.5299e-04 - mse: 8.5299e-04 - val_loss: 8.0846e-04 - val_mse: 8.0846e-04 Epoch 9/700 142/142 [==============================] - 0s 2ms/step - loss: 7.8768e-04 - mse: 7.8768e-04 - val_loss: 7.6579e-04 - val_mse: 7.6579e-04 Epoch 10/700 142/142 [==============================] - 0s 2ms/step - loss: 7.5577e-04 - mse: 7.5577e-04 - val_loss: 7.4190e-04 - val_mse: 7.4190e-04 Epoch 11/700 142/142 [==============================] - 0s 2ms/step - loss: 7.3333e-04 - mse: 7.3333e-04 - val_loss: 7.2310e-04 - val_mse: 7.2310e-04 Epoch 12/700 142/142 [==============================] - 0s 2ms/step - loss: 7.1736e-04 - mse: 7.1736e-04 - val_loss: 7.0729e-04 - val_mse: 7.0729e-04 Epoch 13/700 142/142 [==============================] - 0s 2ms/step - loss: 7.0285e-04 - mse: 7.0285e-04 - val_loss: 6.9338e-04 - val_mse: 6.9338e-04 Epoch 14/700 142/142 [==============================] - 0s 2ms/step - loss: 6.8667e-04 - mse: 6.8667e-04 - val_loss: 6.7902e-04 - val_mse: 6.7902e-04 Epoch 15/700 142/142 [==============================] - 0s 2ms/step - loss: 6.8090e-04 - mse: 6.8090e-04 - val_loss: 6.7951e-04 - val_mse: 6.7951e-04 Epoch 16/700 142/142 [==============================] - 0s 2ms/step - loss: 6.7437e-04 - mse: 6.7437e-04 - val_loss: 6.6716e-04 - val_mse: 6.6716e-04 Epoch 17/700 142/142 [==============================] - 0s 2ms/step - loss: 6.6967e-04 - mse: 6.6967e-04 - val_loss: 6.6151e-04 - val_mse: 6.6151e-04 Epoch 18/700 142/142 [==============================] - 0s 2ms/step - loss: 6.6580e-04 - mse: 6.6580e-04 - val_loss: 6.5682e-04 - val_mse: 6.5682e-04 Epoch 19/700 142/142 [==============================] - 0s 2ms/step - loss: 6.6150e-04 - mse: 6.6150e-04 - val_loss: 6.5541e-04 - val_mse: 6.5541e-04 Epoch 20/700 142/142 [==============================] - 0s 2ms/step - loss: 6.5924e-04 - mse: 6.5924e-04 - val_loss: 6.5001e-04 - val_mse: 6.5001e-04 Epoch 21/700 142/142 [==============================] - 0s 2ms/step - loss: 6.5621e-04 - mse: 6.5621e-04 - val_loss: 6.4932e-04 - val_mse: 6.4932e-04 Epoch 22/700 142/142 [==============================] - 0s 2ms/step - loss: 6.5393e-04 - mse: 6.5393e-04 - val_loss: 6.4399e-04 - val_mse: 6.4399e-04 Epoch 23/700 142/142 [==============================] - 0s 2ms/step - loss: 6.5055e-04 - mse: 6.5055e-04 - val_loss: 6.4215e-04 - val_mse: 6.4215e-04 Epoch 24/700 142/142 [==============================] - 0s 2ms/step - loss: 6.4706e-04 - mse: 6.4706e-04 - val_loss: 6.4020e-04 - val_mse: 6.4020e-04 Epoch 25/700 142/142 [==============================] - 0s 2ms/step - loss: 6.4599e-04 - mse: 6.4599e-04 - val_loss: 6.3980e-04 - val_mse: 6.3980e-04 Epoch 26/700 142/142 [==============================] - 0s 2ms/step - loss: 6.4424e-04 - mse: 6.4424e-04 - val_loss: 6.3289e-04 - val_mse: 6.3289e-04 Epoch 27/700 142/142 [==============================] - 0s 2ms/step - loss: 6.4049e-04 - mse: 6.4049e-04 - val_loss: 6.3040e-04 - val_mse: 6.3040e-04 Epoch 28/700 142/142 [==============================] - 0s 2ms/step - loss: 6.3858e-04 - mse: 6.3858e-04 - val_loss: 6.3013e-04 - val_mse: 6.3013e-04 Epoch 29/700 142/142 [==============================] - 0s 2ms/step - loss: 6.3526e-04 - mse: 6.3526e-04 - val_loss: 6.3363e-04 - val_mse: 6.3363e-04 Epoch 30/700 142/142 [==============================] - 0s 2ms/step - loss: 6.3291e-04 - mse: 6.3291e-04 - val_loss: 6.2255e-04 - val_mse: 6.2255e-04 Epoch 31/700 142/142 [==============================] - 0s 2ms/step - loss: 6.2980e-04 - mse: 6.2980e-04 - val_loss: 6.1878e-04 - val_mse: 6.1878e-04 Epoch 32/700 142/142 [==============================] - 0s 2ms/step - loss: 6.2564e-04 - mse: 6.2564e-04 - val_loss: 6.1478e-04 - val_mse: 6.1478e-04 Epoch 33/700 142/142 [==============================] - 0s 2ms/step - loss: 6.2198e-04 - mse: 6.2198e-04 - val_loss: 6.1536e-04 - val_mse: 6.1536e-04 Epoch 34/700 142/142 [==============================] - 0s 2ms/step - loss: 6.1897e-04 - mse: 6.1897e-04 - val_loss: 6.0593e-04 - val_mse: 6.0593e-04 Epoch 35/700 142/142 [==============================] - 0s 2ms/step - loss: 6.0961e-04 - mse: 6.0961e-04 - val_loss: 6.0049e-04 - val_mse: 6.0049e-04 Epoch 36/700 142/142 [==============================] - 0s 2ms/step - loss: 6.0416e-04 - mse: 6.0416e-04 - val_loss: 5.9199e-04 - val_mse: 5.9199e-04 Epoch 37/700 142/142 [==============================] - 0s 2ms/step - loss: 5.9685e-04 - mse: 5.9685e-04 - val_loss: 5.8336e-04 - val_mse: 5.8336e-04 Epoch 38/700 142/142 [==============================] - 0s 2ms/step - loss: 5.9072e-04 - mse: 5.9072e-04 - val_loss: 5.8458e-04 - val_mse: 5.8458e-04 Epoch 39/700 142/142 [==============================] - 0s 2ms/step - loss: 5.8867e-04 - mse: 5.8867e-04 - val_loss: 5.7766e-04 - val_mse: 5.7766e-04 Epoch 40/700 142/142 [==============================] - 0s 2ms/step - loss: 5.8395e-04 - mse: 5.8395e-04 - val_loss: 5.7029e-04 - val_mse: 5.7029e-04 Epoch 41/700 142/142 [==============================] - 0s 2ms/step - loss: 5.8056e-04 - mse: 5.8056e-04 - val_loss: 5.6597e-04 - val_mse: 5.6597e-04 Epoch 42/700 142/142 [==============================] - 0s 2ms/step - loss: 5.7748e-04 - mse: 5.7748e-04 - val_loss: 5.6561e-04 - val_mse: 5.6561e-04 Epoch 43/700 142/142 [==============================] - 0s 2ms/step - loss: 5.7378e-04 - mse: 5.7378e-04 - val_loss: 5.6676e-04 - val_mse: 5.6676e-04 Epoch 44/700 142/142 [==============================] - 0s 2ms/step - loss: 5.7049e-04 - mse: 5.7049e-04 - val_loss: 5.6343e-04 - val_mse: 5.6343e-04 Epoch 45/700 142/142 [==============================] - 0s 2ms/step - loss: 5.6857e-04 - mse: 5.6857e-04 - val_loss: 5.5889e-04 - val_mse: 5.5889e-04 Epoch 46/700 142/142 [==============================] - 0s 2ms/step - loss: 5.6741e-04 - mse: 5.6741e-04 - val_loss: 5.5987e-04 - val_mse: 5.5987e-04 Epoch 47/700 142/142 [==============================] - 0s 2ms/step - loss: 5.6793e-04 - mse: 5.6793e-04 - val_loss: 5.5968e-04 - val_mse: 5.5968e-04 Epoch 48/700 142/142 [==============================] - 0s 2ms/step - loss: 5.6331e-04 - mse: 5.6331e-04 - val_loss: 5.6126e-04 - val_mse: 5.6126e-04 Epoch 49/700 142/142 [==============================] - 0s 2ms/step - loss: 5.6433e-04 - mse: 5.6433e-04 - val_loss: 5.5260e-04 - val_mse: 5.5260e-04 Epoch 50/700 142/142 [==============================] - 0s 2ms/step - loss: 5.6020e-04 - mse: 5.6020e-04 - val_loss: 5.5022e-04 - val_mse: 5.5022e-04 Epoch 51/700 142/142 [==============================] - 0s 2ms/step - loss: 5.5935e-04 - mse: 5.5935e-04 - val_loss: 5.5184e-04 - val_mse: 5.5184e-04 Epoch 52/700 142/142 [==============================] - 0s 2ms/step - loss: 5.5733e-04 - mse: 5.5733e-04 - val_loss: 5.4542e-04 - val_mse: 5.4542e-04 Epoch 53/700 142/142 [==============================] - 0s 2ms/step - loss: 5.5739e-04 - mse: 5.5739e-04 - val_loss: 5.5512e-04 - val_mse: 5.5512e-04 Epoch 54/700 142/142 [==============================] - 0s 2ms/step - loss: 5.5404e-04 - mse: 5.5404e-04 - val_loss: 5.4842e-04 - val_mse: 5.4842e-04 Epoch 55/700 142/142 [==============================] - 0s 2ms/step - loss: 5.5504e-04 - mse: 5.5504e-04 - val_loss: 5.4492e-04 - val_mse: 5.4492e-04 Epoch 56/700 142/142 [==============================] - 0s 2ms/step - loss: 5.5398e-04 - mse: 5.5398e-04 - val_loss: 5.4163e-04 - val_mse: 5.4163e-04 Epoch 57/700 142/142 [==============================] - 0s 2ms/step - loss: 5.5126e-04 - mse: 5.5126e-04 - val_loss: 5.5011e-04 - val_mse: 5.5011e-04 Epoch 58/700 142/142 [==============================] - 0s 2ms/step - loss: 5.5070e-04 - mse: 5.5070e-04 - val_loss: 5.4042e-04 - val_mse: 5.4042e-04 Epoch 59/700 142/142 [==============================] - 0s 2ms/step - loss: 5.5029e-04 - mse: 5.5029e-04 - val_loss: 5.4390e-04 - val_mse: 5.4390e-04 Epoch 60/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4988e-04 - mse: 5.4988e-04 - val_loss: 5.4226e-04 - val_mse: 5.4226e-04 Epoch 61/700 142/142 [==============================] - 0s 2ms/step - loss: 5.5179e-04 - mse: 5.5179e-04 - val_loss: 5.4690e-04 - val_mse: 5.4690e-04 Epoch 62/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4858e-04 - mse: 5.4858e-04 - val_loss: 5.3948e-04 - val_mse: 5.3948e-04 Epoch 63/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4791e-04 - mse: 5.4791e-04 - val_loss: 5.4262e-04 - val_mse: 5.4262e-04 Epoch 64/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4694e-04 - mse: 5.4694e-04 - val_loss: 5.3686e-04 - val_mse: 5.3686e-04 Epoch 65/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4918e-04 - mse: 5.4918e-04 - val_loss: 5.4057e-04 - val_mse: 5.4057e-04 Epoch 66/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4724e-04 - mse: 5.4724e-04 - val_loss: 5.5264e-04 - val_mse: 5.5264e-04 Epoch 67/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4781e-04 - mse: 5.4781e-04 - val_loss: 5.4466e-04 - val_mse: 5.4466e-04 Epoch 68/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4943e-04 - mse: 5.4943e-04 - val_loss: 5.4194e-04 - val_mse: 5.4194e-04 Epoch 69/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4899e-04 - mse: 5.4899e-04 - val_loss: 5.4350e-04 - val_mse: 5.4350e-04 Epoch 70/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4622e-04 - mse: 5.4622e-04 - val_loss: 5.3874e-04 - val_mse: 5.3874e-04 Epoch 71/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4429e-04 - mse: 5.4429e-04 - val_loss: 5.4404e-04 - val_mse: 5.4404e-04 Epoch 72/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4573e-04 - mse: 5.4573e-04 - val_loss: 5.4542e-04 - val_mse: 5.4542e-04 Epoch 73/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4566e-04 - mse: 5.4566e-04 - val_loss: 5.3594e-04 - val_mse: 5.3594e-04 Epoch 74/700 142/142 [==============================] - 0s 2ms/step - loss: 5.5011e-04 - mse: 5.5011e-04 - val_loss: 5.4389e-04 - val_mse: 5.4389e-04 Epoch 75/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4629e-04 - mse: 5.4629e-04 - val_loss: 5.3886e-04 - val_mse: 5.3886e-04 Epoch 76/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4661e-04 - mse: 5.4661e-04 - val_loss: 5.4052e-04 - val_mse: 5.4052e-04 Epoch 77/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4544e-04 - mse: 5.4544e-04 - val_loss: 5.4070e-04 - val_mse: 5.4070e-04 Epoch 78/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4690e-04 - mse: 5.4690e-04 - val_loss: 5.3474e-04 - val_mse: 5.3474e-04 Epoch 79/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4398e-04 - mse: 5.4398e-04 - val_loss: 5.3642e-04 - val_mse: 5.3642e-04 Epoch 80/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4468e-04 - mse: 5.4468e-04 - val_loss: 5.4781e-04 - val_mse: 5.4781e-04 Epoch 81/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4611e-04 - mse: 5.4611e-04 - val_loss: 5.3827e-04 - val_mse: 5.3827e-04 Epoch 82/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4763e-04 - mse: 5.4763e-04 - val_loss: 5.5026e-04 - val_mse: 5.5026e-04 Epoch 83/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4433e-04 - mse: 5.4433e-04 - val_loss: 5.3751e-04 - val_mse: 5.3751e-04 Epoch 84/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4570e-04 - mse: 5.4570e-04 - val_loss: 5.4161e-04 - val_mse: 5.4161e-04 Epoch 85/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4809e-04 - mse: 5.4809e-04 - val_loss: 5.5013e-04 - val_mse: 5.5013e-04 Epoch 86/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4555e-04 - mse: 5.4555e-04 - val_loss: 5.3773e-04 - val_mse: 5.3773e-04 Epoch 87/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4406e-04 - mse: 5.4406e-04 - val_loss: 5.3593e-04 - val_mse: 5.3593e-04 Epoch 88/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4479e-04 - mse: 5.4479e-04 - val_loss: 5.3826e-04 - val_mse: 5.3826e-04 Epoch 89/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4484e-04 - mse: 5.4484e-04 - val_loss: 5.3417e-04 - val_mse: 5.3417e-04 Epoch 90/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4542e-04 - mse: 5.4542e-04 - val_loss: 5.3638e-04 - val_mse: 5.3638e-04 Epoch 91/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4488e-04 - mse: 5.4488e-04 - val_loss: 5.4049e-04 - val_mse: 5.4049e-04 Epoch 92/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4619e-04 - mse: 5.4619e-04 - val_loss: 5.3700e-04 - val_mse: 5.3700e-04 Epoch 93/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4467e-04 - mse: 5.4467e-04 - val_loss: 5.3555e-04 - val_mse: 5.3555e-04 Epoch 94/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4427e-04 - mse: 5.4427e-04 - val_loss: 5.4004e-04 - val_mse: 5.4004e-04 Epoch 95/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4511e-04 - mse: 5.4511e-04 - val_loss: 5.3725e-04 - val_mse: 5.3725e-04 Epoch 96/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4706e-04 - mse: 5.4706e-04 - val_loss: 5.3387e-04 - val_mse: 5.3387e-04 Epoch 97/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4493e-04 - mse: 5.4493e-04 - val_loss: 5.3435e-04 - val_mse: 5.3435e-04 Epoch 98/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4413e-04 - mse: 5.4413e-04 - val_loss: 5.3749e-04 - val_mse: 5.3749e-04 Epoch 99/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4618e-04 - mse: 5.4618e-04 - val_loss: 5.3598e-04 - val_mse: 5.3598e-04 Epoch 100/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4365e-04 - mse: 5.4365e-04 - val_loss: 5.3713e-04 - val_mse: 5.3713e-04 Epoch 101/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4499e-04 - mse: 5.4499e-04 - val_loss: 5.5114e-04 - val_mse: 5.5114e-04 Epoch 102/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4784e-04 - mse: 5.4784e-04 - val_loss: 5.4231e-04 - val_mse: 5.4231e-04 Epoch 103/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4689e-04 - mse: 5.4689e-04 - val_loss: 5.3881e-04 - val_mse: 5.3881e-04 Epoch 104/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4539e-04 - mse: 5.4539e-04 - val_loss: 5.4484e-04 - val_mse: 5.4484e-04 Epoch 105/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4453e-04 - mse: 5.4453e-04 - val_loss: 5.3643e-04 - val_mse: 5.3643e-04 Epoch 106/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4530e-04 - mse: 5.4530e-04 - val_loss: 5.3770e-04 - val_mse: 5.3770e-04 Epoch 107/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4923e-04 - mse: 5.4923e-04 - val_loss: 5.3292e-04 - val_mse: 5.3292e-04 Epoch 108/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4573e-04 - mse: 5.4573e-04 - val_loss: 5.3479e-04 - val_mse: 5.3479e-04 Epoch 109/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4342e-04 - mse: 5.4342e-04 - val_loss: 5.3383e-04 - val_mse: 5.3383e-04 Epoch 110/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4392e-04 - mse: 5.4392e-04 - val_loss: 5.3932e-04 - val_mse: 5.3932e-04 Epoch 111/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4468e-04 - mse: 5.4468e-04 - val_loss: 5.3238e-04 - val_mse: 5.3238e-04 Epoch 112/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4450e-04 - mse: 5.4450e-04 - val_loss: 5.3488e-04 - val_mse: 5.3488e-04 Epoch 113/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4789e-04 - mse: 5.4789e-04 - val_loss: 5.3699e-04 - val_mse: 5.3699e-04 Epoch 114/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4421e-04 - mse: 5.4421e-04 - val_loss: 5.4024e-04 - val_mse: 5.4024e-04 Epoch 115/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4561e-04 - mse: 5.4561e-04 - val_loss: 5.4188e-04 - val_mse: 5.4188e-04 Epoch 116/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4455e-04 - mse: 5.4455e-04 - val_loss: 5.5406e-04 - val_mse: 5.5406e-04 Epoch 117/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4596e-04 - mse: 5.4596e-04 - val_loss: 5.3289e-04 - val_mse: 5.3289e-04 Epoch 118/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4470e-04 - mse: 5.4470e-04 - val_loss: 5.3853e-04 - val_mse: 5.3853e-04 Epoch 119/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4491e-04 - mse: 5.4491e-04 - val_loss: 5.3351e-04 - val_mse: 5.3351e-04 Epoch 120/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4435e-04 - mse: 5.4435e-04 - val_loss: 5.3289e-04 - val_mse: 5.3289e-04 Epoch 121/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4753e-04 - mse: 5.4753e-04 - val_loss: 5.3297e-04 - val_mse: 5.3297e-04 Epoch 122/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4381e-04 - mse: 5.4381e-04 - val_loss: 5.3739e-04 - val_mse: 5.3739e-04 Epoch 123/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4766e-04 - mse: 5.4766e-04 - val_loss: 5.3784e-04 - val_mse: 5.3784e-04 Epoch 124/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4605e-04 - mse: 5.4605e-04 - val_loss: 5.3425e-04 - val_mse: 5.3425e-04 Epoch 125/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4304e-04 - mse: 5.4304e-04 - val_loss: 5.4014e-04 - val_mse: 5.4014e-04 Epoch 126/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4409e-04 - mse: 5.4409e-04 - val_loss: 5.3254e-04 - val_mse: 5.3254e-04 Epoch 127/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4412e-04 - mse: 5.4412e-04 - val_loss: 5.4064e-04 - val_mse: 5.4064e-04 Epoch 128/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4609e-04 - mse: 5.4609e-04 - val_loss: 5.5627e-04 - val_mse: 5.5627e-04 Epoch 129/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4463e-04 - mse: 5.4463e-04 - val_loss: 5.3638e-04 - val_mse: 5.3638e-04 Epoch 130/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4382e-04 - mse: 5.4382e-04 - val_loss: 5.3355e-04 - val_mse: 5.3355e-04 Epoch 131/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4372e-04 - mse: 5.4372e-04 - val_loss: 5.3233e-04 - val_mse: 5.3233e-04 Epoch 132/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4313e-04 - mse: 5.4313e-04 - val_loss: 5.3826e-04 - val_mse: 5.3826e-04 Epoch 133/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4309e-04 - mse: 5.4309e-04 - val_loss: 5.3624e-04 - val_mse: 5.3624e-04 Epoch 134/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4573e-04 - mse: 5.4573e-04 - val_loss: 5.3812e-04 - val_mse: 5.3812e-04 Epoch 135/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4473e-04 - mse: 5.4473e-04 - val_loss: 5.3513e-04 - val_mse: 5.3513e-04 Epoch 136/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4614e-04 - mse: 5.4614e-04 - val_loss: 5.3920e-04 - val_mse: 5.3920e-04 Epoch 137/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4417e-04 - mse: 5.4417e-04 - val_loss: 5.5745e-04 - val_mse: 5.5745e-04 Epoch 138/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4483e-04 - mse: 5.4483e-04 - val_loss: 5.3346e-04 - val_mse: 5.3346e-04 Epoch 139/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4484e-04 - mse: 5.4484e-04 - val_loss: 5.3869e-04 - val_mse: 5.3869e-04 Epoch 140/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4406e-04 - mse: 5.4406e-04 - val_loss: 5.3642e-04 - val_mse: 5.3642e-04 Epoch 141/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4598e-04 - mse: 5.4598e-04 - val_loss: 5.4329e-04 - val_mse: 5.4329e-04 Epoch 142/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4443e-04 - mse: 5.4443e-04 - val_loss: 5.3356e-04 - val_mse: 5.3356e-04 Epoch 143/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4491e-04 - mse: 5.4491e-04 - val_loss: 5.3291e-04 - val_mse: 5.3291e-04 Epoch 144/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4482e-04 - mse: 5.4482e-04 - val_loss: 5.3612e-04 - val_mse: 5.3612e-04 Epoch 145/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4398e-04 - mse: 5.4398e-04 - val_loss: 5.3642e-04 - val_mse: 5.3642e-04 Epoch 146/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4408e-04 - mse: 5.4408e-04 - val_loss: 5.3582e-04 - val_mse: 5.3582e-04 Epoch 147/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4408e-04 - mse: 5.4408e-04 - val_loss: 5.3604e-04 - val_mse: 5.3604e-04 Epoch 148/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4324e-04 - mse: 5.4324e-04 - val_loss: 5.3617e-04 - val_mse: 5.3617e-04 Epoch 149/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4433e-04 - mse: 5.4433e-04 - val_loss: 5.3893e-04 - val_mse: 5.3893e-04 Epoch 150/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4398e-04 - mse: 5.4398e-04 - val_loss: 5.3692e-04 - val_mse: 5.3692e-04 Epoch 151/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4486e-04 - mse: 5.4486e-04 - val_loss: 5.3417e-04 - val_mse: 5.3417e-04 Epoch 152/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4300e-04 - mse: 5.4300e-04 - val_loss: 5.4568e-04 - val_mse: 5.4568e-04 Epoch 153/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4301e-04 - mse: 5.4301e-04 - val_loss: 5.3946e-04 - val_mse: 5.3946e-04 Epoch 154/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4579e-04 - mse: 5.4579e-04 - val_loss: 5.3478e-04 - val_mse: 5.3478e-04 Epoch 155/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4563e-04 - mse: 5.4563e-04 - val_loss: 5.3695e-04 - val_mse: 5.3695e-04 Epoch 156/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4380e-04 - mse: 5.4380e-04 - val_loss: 5.3637e-04 - val_mse: 5.3637e-04 Epoch 157/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4485e-04 - mse: 5.4485e-04 - val_loss: 5.4318e-04 - val_mse: 5.4318e-04 Epoch 158/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4556e-04 - mse: 5.4556e-04 - val_loss: 5.4564e-04 - val_mse: 5.4564e-04 Epoch 159/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4385e-04 - mse: 5.4385e-04 - val_loss: 5.4030e-04 - val_mse: 5.4030e-04 Epoch 160/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4671e-04 - mse: 5.4671e-04 - val_loss: 5.3846e-04 - val_mse: 5.3846e-04 Epoch 161/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4335e-04 - mse: 5.4335e-04 - val_loss: 5.3437e-04 - val_mse: 5.3437e-04 Epoch 162/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4458e-04 - mse: 5.4458e-04 - val_loss: 5.4125e-04 - val_mse: 5.4125e-04 Epoch 163/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4433e-04 - mse: 5.4433e-04 - val_loss: 5.3957e-04 - val_mse: 5.3957e-04 Epoch 164/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4345e-04 - mse: 5.4345e-04 - val_loss: 5.3835e-04 - val_mse: 5.3835e-04 Epoch 165/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4446e-04 - mse: 5.4446e-04 - val_loss: 5.5075e-04 - val_mse: 5.5075e-04 Epoch 166/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4375e-04 - mse: 5.4375e-04 - val_loss: 5.3977e-04 - val_mse: 5.3977e-04 Epoch 167/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4463e-04 - mse: 5.4463e-04 - val_loss: 5.4642e-04 - val_mse: 5.4642e-04 Epoch 168/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4612e-04 - mse: 5.4612e-04 - val_loss: 5.3830e-04 - val_mse: 5.3830e-04 Epoch 169/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4534e-04 - mse: 5.4534e-04 - val_loss: 5.3337e-04 - val_mse: 5.3337e-04 Epoch 170/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4414e-04 - mse: 5.4414e-04 - val_loss: 5.3807e-04 - val_mse: 5.3807e-04 Epoch 171/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4332e-04 - mse: 5.4332e-04 - val_loss: 5.4424e-04 - val_mse: 5.4424e-04 Epoch 172/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4423e-04 - mse: 5.4423e-04 - val_loss: 5.3580e-04 - val_mse: 5.3580e-04 Epoch 173/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4300e-04 - mse: 5.4300e-04 - val_loss: 5.3718e-04 - val_mse: 5.3718e-04 Epoch 174/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4571e-04 - mse: 5.4571e-04 - val_loss: 5.3890e-04 - val_mse: 5.3890e-04 Epoch 175/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4374e-04 - mse: 5.4374e-04 - val_loss: 5.3756e-04 - val_mse: 5.3756e-04 Epoch 176/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4482e-04 - mse: 5.4482e-04 - val_loss: 5.5066e-04 - val_mse: 5.5066e-04 Epoch 177/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4624e-04 - mse: 5.4624e-04 - val_loss: 5.4220e-04 - val_mse: 5.4220e-04 Epoch 178/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4595e-04 - mse: 5.4595e-04 - val_loss: 5.3553e-04 - val_mse: 5.3553e-04 Epoch 179/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4563e-04 - mse: 5.4563e-04 - val_loss: 5.3255e-04 - val_mse: 5.3255e-04 Epoch 180/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4441e-04 - mse: 5.4441e-04 - val_loss: 5.4427e-04 - val_mse: 5.4427e-04 Epoch 181/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4338e-04 - mse: 5.4338e-04 - val_loss: 5.3951e-04 - val_mse: 5.3951e-04 Epoch 00181: early stopping
<tensorflow.python.keras.callbacks.History at 0x7f1f02351710>
predictions = (model_SOC.predict(X_test_SOC))
print(mean_absolute_error(Y_test_SOC, predictions))
0.017012958412838373
compare = pd.concat([pd.DataFrame(predictions), pd.DataFrame(Y_test_SOC)], axis=1)
compare.columns = ['Predictions', 'Actual Output']
compare
Predictions | Actual Output | |
---|---|---|
0 | 0.790278 | 0.788331 |
1 | 0.915809 | 0.912569 |
2 | 0.345753 | 0.353759 |
3 | 0.249428 | 0.253276 |
4 | 0.373009 | 0.371483 |
... | ... | ... |
23392 | 0.623608 | 0.625103 |
23393 | 0.794099 | 0.787421 |
23394 | 0.345132 | 0.342103 |
23395 | 0.198163 | 0.194517 |
23396 | 0.344576 | 0.337345 |
23397 rows × 2 columns
model_SOE = Sequential()
model_SOE.add(Dense(units=5, activation='relu', input_dim=len(X_train_SOE.columns)))
model_SOE.add(Dense(units=5, activation='relu'))
model_SOE.add(Dense(units=1, activation='linear'))
es = tf.keras.callbacks.EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=50)
model_SOE.compile(loss='mse', optimizer=opt, metrics='mse')
model_SOE.summary()
Model: "sequential_1" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense_3 (Dense) (None, 5) 25 _________________________________________________________________ dense_4 (Dense) (None, 5) 30 _________________________________________________________________ dense_5 (Dense) (None, 1) 6 ================================================================= Total params: 61 Trainable params: 61 Non-trainable params: 0 _________________________________________________________________
model_SOE.fit(X_train_SOE, Y_train_SOE, epochs=700, batch_size=512, validation_split=0.2, validation_data=None, verbose=1, callbacks=[es])
Epoch 1/700 142/142 [==============================] - 1s 3ms/step - loss: 0.0526 - mse: 0.0526 - val_loss: 0.0066 - val_mse: 0.0066 Epoch 2/700 142/142 [==============================] - 0s 2ms/step - loss: 0.0021 - mse: 0.0021 - val_loss: 5.3857e-04 - val_mse: 5.3857e-04 Epoch 3/700 142/142 [==============================] - 0s 2ms/step - loss: 2.9140e-04 - mse: 2.9140e-04 - val_loss: 1.7826e-04 - val_mse: 1.7826e-04 Epoch 4/700 142/142 [==============================] - 0s 2ms/step - loss: 1.4224e-04 - mse: 1.4224e-04 - val_loss: 1.2226e-04 - val_mse: 1.2226e-04 Epoch 5/700 142/142 [==============================] - 0s 2ms/step - loss: 1.1522e-04 - mse: 1.1522e-04 - val_loss: 1.0479e-04 - val_mse: 1.0479e-04 Epoch 6/700 142/142 [==============================] - 0s 2ms/step - loss: 9.9592e-05 - mse: 9.9592e-05 - val_loss: 8.9316e-05 - val_mse: 8.9316e-05 Epoch 7/700 142/142 [==============================] - 0s 2ms/step - loss: 8.3193e-05 - mse: 8.3193e-05 - val_loss: 7.3904e-05 - val_mse: 7.3904e-05 Epoch 8/700 142/142 [==============================] - 0s 2ms/step - loss: 6.8225e-05 - mse: 6.8225e-05 - val_loss: 5.9457e-05 - val_mse: 5.9457e-05 Epoch 9/700 142/142 [==============================] - 0s 2ms/step - loss: 5.5529e-05 - mse: 5.5529e-05 - val_loss: 4.8271e-05 - val_mse: 4.8271e-05 Epoch 10/700 142/142 [==============================] - 0s 2ms/step - loss: 4.5136e-05 - mse: 4.5136e-05 - val_loss: 4.0141e-05 - val_mse: 4.0141e-05 Epoch 11/700 142/142 [==============================] - 0s 2ms/step - loss: 3.7806e-05 - mse: 3.7806e-05 - val_loss: 3.4037e-05 - val_mse: 3.4037e-05 Epoch 12/700 142/142 [==============================] - 0s 2ms/step - loss: 3.2755e-05 - mse: 3.2755e-05 - val_loss: 3.0492e-05 - val_mse: 3.0492e-05 Epoch 13/700 142/142 [==============================] - 0s 2ms/step - loss: 2.9510e-05 - mse: 2.9510e-05 - val_loss: 2.8314e-05 - val_mse: 2.8314e-05 Epoch 14/700 142/142 [==============================] - 0s 2ms/step - loss: 2.7545e-05 - mse: 2.7545e-05 - val_loss: 2.6867e-05 - val_mse: 2.6867e-05 Epoch 15/700 142/142 [==============================] - 0s 2ms/step - loss: 2.6600e-05 - mse: 2.6600e-05 - val_loss: 2.5594e-05 - val_mse: 2.5594e-05 Epoch 16/700 142/142 [==============================] - 0s 2ms/step - loss: 2.6069e-05 - mse: 2.6069e-05 - val_loss: 2.7239e-05 - val_mse: 2.7239e-05 Epoch 17/700 142/142 [==============================] - 0s 2ms/step - loss: 2.5456e-05 - mse: 2.5456e-05 - val_loss: 2.5045e-05 - val_mse: 2.5045e-05 Epoch 18/700 142/142 [==============================] - 0s 2ms/step - loss: 2.5144e-05 - mse: 2.5144e-05 - val_loss: 2.5446e-05 - val_mse: 2.5446e-05 Epoch 19/700 142/142 [==============================] - 0s 2ms/step - loss: 2.5115e-05 - mse: 2.5115e-05 - val_loss: 2.4581e-05 - val_mse: 2.4581e-05 Epoch 20/700 142/142 [==============================] - 0s 2ms/step - loss: 2.4735e-05 - mse: 2.4735e-05 - val_loss: 2.4208e-05 - val_mse: 2.4208e-05 Epoch 21/700 142/142 [==============================] - 0s 2ms/step - loss: 2.4446e-05 - mse: 2.4446e-05 - val_loss: 2.4709e-05 - val_mse: 2.4709e-05 Epoch 22/700 142/142 [==============================] - 0s 2ms/step - loss: 2.4415e-05 - mse: 2.4415e-05 - val_loss: 2.4662e-05 - val_mse: 2.4662e-05 Epoch 23/700 142/142 [==============================] - 0s 2ms/step - loss: 2.4095e-05 - mse: 2.4095e-05 - val_loss: 2.3363e-05 - val_mse: 2.3363e-05 Epoch 24/700 142/142 [==============================] - 0s 2ms/step - loss: 2.4061e-05 - mse: 2.4061e-05 - val_loss: 2.4560e-05 - val_mse: 2.4560e-05 Epoch 25/700 142/142 [==============================] - 0s 2ms/step - loss: 2.3331e-05 - mse: 2.3331e-05 - val_loss: 2.3319e-05 - val_mse: 2.3319e-05 Epoch 26/700 142/142 [==============================] - 0s 2ms/step - loss: 2.2947e-05 - mse: 2.2947e-05 - val_loss: 2.3465e-05 - val_mse: 2.3465e-05 Epoch 27/700 142/142 [==============================] - 0s 2ms/step - loss: 2.2663e-05 - mse: 2.2663e-05 - val_loss: 2.2288e-05 - val_mse: 2.2288e-05 Epoch 28/700 142/142 [==============================] - 0s 2ms/step - loss: 2.2269e-05 - mse: 2.2269e-05 - val_loss: 2.2062e-05 - val_mse: 2.2062e-05 Epoch 29/700 142/142 [==============================] - 0s 2ms/step - loss: 2.2062e-05 - mse: 2.2062e-05 - val_loss: 2.1555e-05 - val_mse: 2.1555e-05 Epoch 30/700 142/142 [==============================] - 0s 2ms/step - loss: 2.1623e-05 - mse: 2.1623e-05 - val_loss: 2.1288e-05 - val_mse: 2.1288e-05 Epoch 31/700 142/142 [==============================] - 0s 2ms/step - loss: 2.1070e-05 - mse: 2.1070e-05 - val_loss: 2.0975e-05 - val_mse: 2.0975e-05 Epoch 32/700 142/142 [==============================] - 0s 2ms/step - loss: 2.0849e-05 - mse: 2.0849e-05 - val_loss: 2.0776e-05 - val_mse: 2.0776e-05 Epoch 33/700 142/142 [==============================] - 0s 2ms/step - loss: 2.0512e-05 - mse: 2.0512e-05 - val_loss: 2.0079e-05 - val_mse: 2.0079e-05 Epoch 34/700 142/142 [==============================] - 0s 2ms/step - loss: 2.0009e-05 - mse: 2.0009e-05 - val_loss: 1.9775e-05 - val_mse: 1.9775e-05 Epoch 35/700 142/142 [==============================] - 0s 2ms/step - loss: 1.9613e-05 - mse: 1.9613e-05 - val_loss: 2.0653e-05 - val_mse: 2.0653e-05 Epoch 36/700 142/142 [==============================] - 0s 2ms/step - loss: 1.9288e-05 - mse: 1.9288e-05 - val_loss: 1.8985e-05 - val_mse: 1.8985e-05 Epoch 37/700 142/142 [==============================] - 0s 2ms/step - loss: 1.8640e-05 - mse: 1.8640e-05 - val_loss: 1.8776e-05 - val_mse: 1.8776e-05 Epoch 38/700 142/142 [==============================] - 0s 2ms/step - loss: 1.8420e-05 - mse: 1.8420e-05 - val_loss: 1.8279e-05 - val_mse: 1.8279e-05 Epoch 39/700 142/142 [==============================] - 0s 2ms/step - loss: 1.7976e-05 - mse: 1.7976e-05 - val_loss: 1.7663e-05 - val_mse: 1.7663e-05 Epoch 40/700 142/142 [==============================] - 0s 2ms/step - loss: 1.7514e-05 - mse: 1.7514e-05 - val_loss: 1.7499e-05 - val_mse: 1.7499e-05 Epoch 41/700 142/142 [==============================] - 0s 2ms/step - loss: 1.7211e-05 - mse: 1.7211e-05 - val_loss: 1.6851e-05 - val_mse: 1.6851e-05 Epoch 42/700 142/142 [==============================] - 0s 2ms/step - loss: 1.6698e-05 - mse: 1.6698e-05 - val_loss: 1.7022e-05 - val_mse: 1.7022e-05 Epoch 43/700 142/142 [==============================] - 0s 2ms/step - loss: 1.6414e-05 - mse: 1.6414e-05 - val_loss: 1.6256e-05 - val_mse: 1.6256e-05 Epoch 44/700 142/142 [==============================] - 0s 2ms/step - loss: 1.6108e-05 - mse: 1.6108e-05 - val_loss: 1.5767e-05 - val_mse: 1.5767e-05 Epoch 45/700 142/142 [==============================] - 0s 2ms/step - loss: 1.5775e-05 - mse: 1.5775e-05 - val_loss: 1.6060e-05 - val_mse: 1.6060e-05 Epoch 46/700 142/142 [==============================] - 0s 2ms/step - loss: 1.5643e-05 - mse: 1.5643e-05 - val_loss: 1.5333e-05 - val_mse: 1.5333e-05 Epoch 47/700 142/142 [==============================] - 0s 2ms/step - loss: 1.5057e-05 - mse: 1.5057e-05 - val_loss: 1.5073e-05 - val_mse: 1.5073e-05 Epoch 48/700 142/142 [==============================] - 0s 2ms/step - loss: 1.4708e-05 - mse: 1.4708e-05 - val_loss: 1.4667e-05 - val_mse: 1.4667e-05 Epoch 49/700 142/142 [==============================] - 0s 2ms/step - loss: 1.4553e-05 - mse: 1.4553e-05 - val_loss: 1.4488e-05 - val_mse: 1.4488e-05 Epoch 50/700 142/142 [==============================] - 0s 2ms/step - loss: 1.4364e-05 - mse: 1.4364e-05 - val_loss: 1.3975e-05 - val_mse: 1.3975e-05 Epoch 51/700 142/142 [==============================] - 0s 2ms/step - loss: 1.3986e-05 - mse: 1.3986e-05 - val_loss: 1.4223e-05 - val_mse: 1.4223e-05 Epoch 52/700 142/142 [==============================] - 0s 2ms/step - loss: 1.3479e-05 - mse: 1.3479e-05 - val_loss: 1.3964e-05 - val_mse: 1.3964e-05 Epoch 53/700 142/142 [==============================] - 0s 2ms/step - loss: 1.3292e-05 - mse: 1.3292e-05 - val_loss: 1.3270e-05 - val_mse: 1.3270e-05 Epoch 54/700 142/142 [==============================] - 0s 2ms/step - loss: 1.3018e-05 - mse: 1.3018e-05 - val_loss: 1.3879e-05 - val_mse: 1.3879e-05 Epoch 55/700 142/142 [==============================] - 0s 2ms/step - loss: 1.2641e-05 - mse: 1.2641e-05 - val_loss: 1.2411e-05 - val_mse: 1.2411e-05 Epoch 56/700 142/142 [==============================] - 0s 2ms/step - loss: 1.2441e-05 - mse: 1.2441e-05 - val_loss: 1.2367e-05 - val_mse: 1.2367e-05 Epoch 57/700 142/142 [==============================] - 0s 2ms/step - loss: 1.2409e-05 - mse: 1.2409e-05 - val_loss: 1.2927e-05 - val_mse: 1.2927e-05 Epoch 58/700 142/142 [==============================] - 0s 2ms/step - loss: 1.1967e-05 - mse: 1.1967e-05 - val_loss: 1.2266e-05 - val_mse: 1.2266e-05 Epoch 59/700 142/142 [==============================] - 0s 2ms/step - loss: 1.1680e-05 - mse: 1.1680e-05 - val_loss: 1.1234e-05 - val_mse: 1.1234e-05 Epoch 60/700 142/142 [==============================] - 0s 2ms/step - loss: 1.1258e-05 - mse: 1.1258e-05 - val_loss: 1.1203e-05 - val_mse: 1.1203e-05 Epoch 61/700 142/142 [==============================] - 0s 2ms/step - loss: 1.0683e-05 - mse: 1.0683e-05 - val_loss: 1.0489e-05 - val_mse: 1.0489e-05 Epoch 62/700 142/142 [==============================] - 0s 2ms/step - loss: 1.0471e-05 - mse: 1.0471e-05 - val_loss: 1.0145e-05 - val_mse: 1.0145e-05 Epoch 63/700 142/142 [==============================] - 0s 2ms/step - loss: 1.0108e-05 - mse: 1.0108e-05 - val_loss: 9.5963e-06 - val_mse: 9.5963e-06 Epoch 64/700 142/142 [==============================] - 0s 2ms/step - loss: 9.6301e-06 - mse: 9.6301e-06 - val_loss: 9.3115e-06 - val_mse: 9.3115e-06 Epoch 65/700 142/142 [==============================] - 0s 2ms/step - loss: 9.1588e-06 - mse: 9.1588e-06 - val_loss: 8.7716e-06 - val_mse: 8.7716e-06 Epoch 66/700 142/142 [==============================] - 0s 2ms/step - loss: 8.7787e-06 - mse: 8.7787e-06 - val_loss: 9.7685e-06 - val_mse: 9.7685e-06 Epoch 67/700 142/142 [==============================] - 0s 2ms/step - loss: 8.3238e-06 - mse: 8.3238e-06 - val_loss: 8.2768e-06 - val_mse: 8.2768e-06 Epoch 68/700 142/142 [==============================] - 0s 2ms/step - loss: 7.8296e-06 - mse: 7.8296e-06 - val_loss: 7.5962e-06 - val_mse: 7.5962e-06 Epoch 69/700 142/142 [==============================] - 0s 2ms/step - loss: 7.4967e-06 - mse: 7.4967e-06 - val_loss: 7.9796e-06 - val_mse: 7.9796e-06 Epoch 70/700 142/142 [==============================] - 0s 2ms/step - loss: 6.8790e-06 - mse: 6.8790e-06 - val_loss: 7.2819e-06 - val_mse: 7.2819e-06 Epoch 71/700 142/142 [==============================] - 0s 2ms/step - loss: 6.5876e-06 - mse: 6.5876e-06 - val_loss: 6.2421e-06 - val_mse: 6.2421e-06 Epoch 72/700 142/142 [==============================] - 0s 2ms/step - loss: 6.2111e-06 - mse: 6.2111e-06 - val_loss: 5.9616e-06 - val_mse: 5.9616e-06 Epoch 73/700 142/142 [==============================] - 0s 2ms/step - loss: 5.9995e-06 - mse: 5.9995e-06 - val_loss: 6.5872e-06 - val_mse: 6.5872e-06 Epoch 74/700 142/142 [==============================] - 0s 2ms/step - loss: 5.7115e-06 - mse: 5.7115e-06 - val_loss: 5.8805e-06 - val_mse: 5.8805e-06 Epoch 75/700 142/142 [==============================] - 0s 2ms/step - loss: 5.3159e-06 - mse: 5.3159e-06 - val_loss: 5.0692e-06 - val_mse: 5.0692e-06 Epoch 76/700 142/142 [==============================] - 0s 2ms/step - loss: 5.4546e-06 - mse: 5.4546e-06 - val_loss: 4.7572e-06 - val_mse: 4.7572e-06 Epoch 77/700 142/142 [==============================] - 0s 2ms/step - loss: 4.9336e-06 - mse: 4.9336e-06 - val_loss: 4.7029e-06 - val_mse: 4.7029e-06 Epoch 78/700 142/142 [==============================] - 0s 2ms/step - loss: 4.6917e-06 - mse: 4.6917e-06 - val_loss: 4.7486e-06 - val_mse: 4.7486e-06 Epoch 79/700 142/142 [==============================] - 0s 2ms/step - loss: 4.7064e-06 - mse: 4.7064e-06 - val_loss: 4.6000e-06 - val_mse: 4.6000e-06 Epoch 80/700 142/142 [==============================] - 0s 2ms/step - loss: 4.6125e-06 - mse: 4.6125e-06 - val_loss: 4.2830e-06 - val_mse: 4.2830e-06 Epoch 81/700 142/142 [==============================] - 0s 2ms/step - loss: 4.4000e-06 - mse: 4.4000e-06 - val_loss: 4.2021e-06 - val_mse: 4.2021e-06 Epoch 82/700 142/142 [==============================] - 0s 2ms/step - loss: 4.3174e-06 - mse: 4.3174e-06 - val_loss: 4.3824e-06 - val_mse: 4.3824e-06 Epoch 83/700 142/142 [==============================] - 0s 2ms/step - loss: 4.3178e-06 - mse: 4.3178e-06 - val_loss: 4.0126e-06 - val_mse: 4.0126e-06 Epoch 84/700 142/142 [==============================] - 0s 2ms/step - loss: 4.1701e-06 - mse: 4.1701e-06 - val_loss: 4.1574e-06 - val_mse: 4.1574e-06 Epoch 85/700 142/142 [==============================] - 0s 2ms/step - loss: 4.2634e-06 - mse: 4.2634e-06 - val_loss: 4.1241e-06 - val_mse: 4.1241e-06 Epoch 86/700 142/142 [==============================] - 0s 2ms/step - loss: 4.2194e-06 - mse: 4.2194e-06 - val_loss: 4.0403e-06 - val_mse: 4.0403e-06 Epoch 87/700 142/142 [==============================] - 0s 2ms/step - loss: 4.1250e-06 - mse: 4.1250e-06 - val_loss: 4.3991e-06 - val_mse: 4.3991e-06 Epoch 88/700 142/142 [==============================] - 0s 2ms/step - loss: 4.2159e-06 - mse: 4.2159e-06 - val_loss: 3.8234e-06 - val_mse: 3.8234e-06 Epoch 89/700 142/142 [==============================] - 0s 2ms/step - loss: 4.0505e-06 - mse: 4.0505e-06 - val_loss: 3.8457e-06 - val_mse: 3.8457e-06 Epoch 90/700 142/142 [==============================] - 0s 2ms/step - loss: 4.2580e-06 - mse: 4.2580e-06 - val_loss: 4.0980e-06 - val_mse: 4.0980e-06 Epoch 91/700 142/142 [==============================] - 0s 2ms/step - loss: 3.9333e-06 - mse: 3.9333e-06 - val_loss: 3.7788e-06 - val_mse: 3.7788e-06 Epoch 92/700 142/142 [==============================] - 0s 2ms/step - loss: 4.2675e-06 - mse: 4.2675e-06 - val_loss: 3.7064e-06 - val_mse: 3.7064e-06 Epoch 93/700 142/142 [==============================] - 0s 2ms/step - loss: 3.8921e-06 - mse: 3.8921e-06 - val_loss: 3.8616e-06 - val_mse: 3.8616e-06 Epoch 94/700 142/142 [==============================] - 0s 2ms/step - loss: 3.9124e-06 - mse: 3.9124e-06 - val_loss: 4.2003e-06 - val_mse: 4.2003e-06 Epoch 95/700 142/142 [==============================] - 0s 2ms/step - loss: 4.0001e-06 - mse: 4.0001e-06 - val_loss: 4.4680e-06 - val_mse: 4.4680e-06 Epoch 96/700 142/142 [==============================] - 0s 2ms/step - loss: 3.9523e-06 - mse: 3.9523e-06 - val_loss: 4.3234e-06 - val_mse: 4.3234e-06 Epoch 97/700 142/142 [==============================] - 0s 2ms/step - loss: 3.8501e-06 - mse: 3.8501e-06 - val_loss: 3.6939e-06 - val_mse: 3.6939e-06 Epoch 98/700 142/142 [==============================] - 0s 2ms/step - loss: 3.9122e-06 - mse: 3.9122e-06 - val_loss: 4.0291e-06 - val_mse: 4.0291e-06 Epoch 99/700 142/142 [==============================] - 0s 2ms/step - loss: 3.9413e-06 - mse: 3.9413e-06 - val_loss: 3.5712e-06 - val_mse: 3.5712e-06 Epoch 100/700 142/142 [==============================] - 0s 2ms/step - loss: 3.8332e-06 - mse: 3.8332e-06 - val_loss: 3.6051e-06 - val_mse: 3.6051e-06 Epoch 101/700 142/142 [==============================] - 0s 2ms/step - loss: 3.8128e-06 - mse: 3.8128e-06 - val_loss: 3.6263e-06 - val_mse: 3.6263e-06 Epoch 102/700 142/142 [==============================] - 0s 2ms/step - loss: 3.8030e-06 - mse: 3.8030e-06 - val_loss: 3.6661e-06 - val_mse: 3.6661e-06 Epoch 103/700 142/142 [==============================] - 0s 2ms/step - loss: 3.8095e-06 - mse: 3.8095e-06 - val_loss: 5.2198e-06 - val_mse: 5.2198e-06 Epoch 104/700 142/142 [==============================] - 0s 2ms/step - loss: 3.7951e-06 - mse: 3.7951e-06 - val_loss: 3.6381e-06 - val_mse: 3.6381e-06 Epoch 105/700 142/142 [==============================] - 0s 2ms/step - loss: 3.7567e-06 - mse: 3.7567e-06 - val_loss: 3.9087e-06 - val_mse: 3.9087e-06 Epoch 106/700 142/142 [==============================] - 0s 2ms/step - loss: 3.8456e-06 - mse: 3.8456e-06 - val_loss: 4.7997e-06 - val_mse: 4.7997e-06 Epoch 107/700 142/142 [==============================] - 0s 2ms/step - loss: 3.7875e-06 - mse: 3.7875e-06 - val_loss: 3.5871e-06 - val_mse: 3.5871e-06 Epoch 108/700 142/142 [==============================] - 0s 2ms/step - loss: 3.6586e-06 - mse: 3.6586e-06 - val_loss: 3.4109e-06 - val_mse: 3.4109e-06 Epoch 109/700 142/142 [==============================] - 0s 2ms/step - loss: 3.6356e-06 - mse: 3.6356e-06 - val_loss: 3.3819e-06 - val_mse: 3.3819e-06 Epoch 110/700 142/142 [==============================] - 0s 2ms/step - loss: 3.5675e-06 - mse: 3.5675e-06 - val_loss: 3.3571e-06 - val_mse: 3.3571e-06 Epoch 111/700 142/142 [==============================] - 0s 2ms/step - loss: 3.4951e-06 - mse: 3.4951e-06 - val_loss: 3.3921e-06 - val_mse: 3.3921e-06 Epoch 112/700 142/142 [==============================] - 0s 2ms/step - loss: 3.5948e-06 - mse: 3.5948e-06 - val_loss: 3.9529e-06 - val_mse: 3.9529e-06 Epoch 113/700 142/142 [==============================] - 0s 2ms/step - loss: 3.4748e-06 - mse: 3.4748e-06 - val_loss: 3.6755e-06 - val_mse: 3.6755e-06 Epoch 114/700 142/142 [==============================] - 0s 2ms/step - loss: 3.4941e-06 - mse: 3.4941e-06 - val_loss: 3.5029e-06 - val_mse: 3.5029e-06 Epoch 115/700 142/142 [==============================] - 0s 2ms/step - loss: 3.4350e-06 - mse: 3.4350e-06 - val_loss: 3.9733e-06 - val_mse: 3.9733e-06 Epoch 116/700 142/142 [==============================] - 0s 2ms/step - loss: 3.4151e-06 - mse: 3.4151e-06 - val_loss: 3.9147e-06 - val_mse: 3.9147e-06 Epoch 117/700 142/142 [==============================] - 0s 2ms/step - loss: 3.4537e-06 - mse: 3.4537e-06 - val_loss: 3.2070e-06 - val_mse: 3.2070e-06 Epoch 118/700 142/142 [==============================] - 0s 2ms/step - loss: 3.2518e-06 - mse: 3.2518e-06 - val_loss: 3.2028e-06 - val_mse: 3.2028e-06 Epoch 119/700 142/142 [==============================] - 0s 2ms/step - loss: 3.1837e-06 - mse: 3.1837e-06 - val_loss: 3.0604e-06 - val_mse: 3.0604e-06 Epoch 120/700 142/142 [==============================] - 0s 2ms/step - loss: 3.1723e-06 - mse: 3.1723e-06 - val_loss: 3.0858e-06 - val_mse: 3.0858e-06 Epoch 121/700 142/142 [==============================] - 0s 2ms/step - loss: 3.2109e-06 - mse: 3.2109e-06 - val_loss: 3.8566e-06 - val_mse: 3.8566e-06 Epoch 122/700 142/142 [==============================] - 0s 2ms/step - loss: 3.1795e-06 - mse: 3.1795e-06 - val_loss: 3.7558e-06 - val_mse: 3.7558e-06 Epoch 123/700 142/142 [==============================] - 0s 2ms/step - loss: 3.1355e-06 - mse: 3.1355e-06 - val_loss: 3.0863e-06 - val_mse: 3.0863e-06 Epoch 124/700 142/142 [==============================] - 0s 2ms/step - loss: 2.9923e-06 - mse: 2.9923e-06 - val_loss: 2.8432e-06 - val_mse: 2.8432e-06 Epoch 125/700 142/142 [==============================] - 0s 2ms/step - loss: 2.9979e-06 - mse: 2.9979e-06 - val_loss: 3.2011e-06 - val_mse: 3.2011e-06 Epoch 126/700 142/142 [==============================] - 0s 2ms/step - loss: 3.0691e-06 - mse: 3.0691e-06 - val_loss: 2.9475e-06 - val_mse: 2.9475e-06 Epoch 127/700 142/142 [==============================] - 0s 2ms/step - loss: 2.8930e-06 - mse: 2.8930e-06 - val_loss: 3.0564e-06 - val_mse: 3.0564e-06 Epoch 128/700 142/142 [==============================] - 0s 2ms/step - loss: 2.9647e-06 - mse: 2.9647e-06 - val_loss: 3.2874e-06 - val_mse: 3.2874e-06 Epoch 129/700 142/142 [==============================] - 0s 2ms/step - loss: 2.9256e-06 - mse: 2.9256e-06 - val_loss: 2.8070e-06 - val_mse: 2.8070e-06 Epoch 130/700 142/142 [==============================] - 0s 2ms/step - loss: 2.9028e-06 - mse: 2.9028e-06 - val_loss: 3.4095e-06 - val_mse: 3.4095e-06 Epoch 131/700 142/142 [==============================] - 0s 2ms/step - loss: 2.9934e-06 - mse: 2.9934e-06 - val_loss: 2.6288e-06 - val_mse: 2.6288e-06 Epoch 132/700 142/142 [==============================] - 0s 2ms/step - loss: 2.7785e-06 - mse: 2.7785e-06 - val_loss: 2.5877e-06 - val_mse: 2.5877e-06 Epoch 133/700 142/142 [==============================] - 0s 2ms/step - loss: 2.8009e-06 - mse: 2.8009e-06 - val_loss: 2.5380e-06 - val_mse: 2.5380e-06 Epoch 134/700 142/142 [==============================] - 0s 2ms/step - loss: 2.6792e-06 - mse: 2.6792e-06 - val_loss: 3.4028e-06 - val_mse: 3.4028e-06 Epoch 135/700 142/142 [==============================] - 0s 2ms/step - loss: 2.6792e-06 - mse: 2.6792e-06 - val_loss: 2.5491e-06 - val_mse: 2.5491e-06 Epoch 136/700 142/142 [==============================] - 0s 2ms/step - loss: 2.6579e-06 - mse: 2.6579e-06 - val_loss: 2.5311e-06 - val_mse: 2.5311e-06 Epoch 137/700 142/142 [==============================] - 0s 2ms/step - loss: 2.7072e-06 - mse: 2.7072e-06 - val_loss: 2.5279e-06 - val_mse: 2.5279e-06 Epoch 138/700 142/142 [==============================] - 0s 2ms/step - loss: 2.5650e-06 - mse: 2.5650e-06 - val_loss: 2.8701e-06 - val_mse: 2.8701e-06 Epoch 139/700 142/142 [==============================] - 0s 2ms/step - loss: 2.6272e-06 - mse: 2.6272e-06 - val_loss: 2.3327e-06 - val_mse: 2.3327e-06 Epoch 140/700 142/142 [==============================] - 0s 2ms/step - loss: 2.5942e-06 - mse: 2.5942e-06 - val_loss: 2.4253e-06 - val_mse: 2.4253e-06 Epoch 141/700 142/142 [==============================] - 0s 2ms/step - loss: 2.5971e-06 - mse: 2.5971e-06 - val_loss: 2.5316e-06 - val_mse: 2.5316e-06 Epoch 142/700 142/142 [==============================] - 0s 2ms/step - loss: 2.4517e-06 - mse: 2.4517e-06 - val_loss: 2.2936e-06 - val_mse: 2.2936e-06 Epoch 143/700 142/142 [==============================] - 0s 2ms/step - loss: 2.5778e-06 - mse: 2.5778e-06 - val_loss: 2.4225e-06 - val_mse: 2.4225e-06 Epoch 144/700 142/142 [==============================] - 0s 2ms/step - loss: 2.4623e-06 - mse: 2.4623e-06 - val_loss: 2.2737e-06 - val_mse: 2.2737e-06 Epoch 145/700 142/142 [==============================] - 0s 2ms/step - loss: 2.4166e-06 - mse: 2.4166e-06 - val_loss: 2.3751e-06 - val_mse: 2.3751e-06 Epoch 146/700 142/142 [==============================] - 0s 2ms/step - loss: 2.5355e-06 - mse: 2.5355e-06 - val_loss: 3.1643e-06 - val_mse: 3.1643e-06 Epoch 147/700 142/142 [==============================] - 0s 2ms/step - loss: 2.4142e-06 - mse: 2.4142e-06 - val_loss: 2.4713e-06 - val_mse: 2.4713e-06 Epoch 148/700 142/142 [==============================] - 0s 2ms/step - loss: 2.5176e-06 - mse: 2.5176e-06 - val_loss: 2.2878e-06 - val_mse: 2.2878e-06 Epoch 149/700 142/142 [==============================] - 0s 2ms/step - loss: 2.5506e-06 - mse: 2.5506e-06 - val_loss: 2.9055e-06 - val_mse: 2.9055e-06 Epoch 150/700 142/142 [==============================] - 0s 2ms/step - loss: 2.4419e-06 - mse: 2.4419e-06 - val_loss: 2.2676e-06 - val_mse: 2.2676e-06 Epoch 151/700 142/142 [==============================] - 0s 2ms/step - loss: 2.4029e-06 - mse: 2.4029e-06 - val_loss: 2.3824e-06 - val_mse: 2.3824e-06 Epoch 152/700 142/142 [==============================] - 0s 2ms/step - loss: 2.3878e-06 - mse: 2.3878e-06 - val_loss: 2.2811e-06 - val_mse: 2.2811e-06 Epoch 153/700 142/142 [==============================] - 0s 2ms/step - loss: 2.3457e-06 - mse: 2.3457e-06 - val_loss: 2.2619e-06 - val_mse: 2.2619e-06 Epoch 154/700 142/142 [==============================] - 0s 2ms/step - loss: 2.2996e-06 - mse: 2.2996e-06 - val_loss: 2.3008e-06 - val_mse: 2.3008e-06 Epoch 155/700 142/142 [==============================] - 0s 2ms/step - loss: 2.4167e-06 - mse: 2.4167e-06 - val_loss: 2.4913e-06 - val_mse: 2.4913e-06 Epoch 156/700 142/142 [==============================] - 0s 2ms/step - loss: 2.2416e-06 - mse: 2.2416e-06 - val_loss: 2.0401e-06 - val_mse: 2.0401e-06 Epoch 157/700 142/142 [==============================] - 0s 2ms/step - loss: 2.1423e-06 - mse: 2.1423e-06 - val_loss: 1.9163e-06 - val_mse: 1.9163e-06 Epoch 158/700 142/142 [==============================] - 0s 2ms/step - loss: 2.0583e-06 - mse: 2.0583e-06 - val_loss: 2.2285e-06 - val_mse: 2.2285e-06 Epoch 159/700 142/142 [==============================] - 0s 2ms/step - loss: 2.1580e-06 - mse: 2.1580e-06 - val_loss: 2.1592e-06 - val_mse: 2.1592e-06 Epoch 160/700 142/142 [==============================] - 0s 2ms/step - loss: 1.9882e-06 - mse: 1.9882e-06 - val_loss: 1.8847e-06 - val_mse: 1.8847e-06 Epoch 161/700 142/142 [==============================] - 0s 2ms/step - loss: 2.0554e-06 - mse: 2.0554e-06 - val_loss: 1.8690e-06 - val_mse: 1.8690e-06 Epoch 162/700 142/142 [==============================] - 0s 2ms/step - loss: 2.1573e-06 - mse: 2.1573e-06 - val_loss: 2.1519e-06 - val_mse: 2.1519e-06 Epoch 163/700 142/142 [==============================] - 0s 2ms/step - loss: 1.9178e-06 - mse: 1.9178e-06 - val_loss: 1.8653e-06 - val_mse: 1.8653e-06 Epoch 164/700 142/142 [==============================] - 0s 2ms/step - loss: 1.9433e-06 - mse: 1.9433e-06 - val_loss: 2.5234e-06 - val_mse: 2.5234e-06 Epoch 165/700 142/142 [==============================] - 0s 2ms/step - loss: 1.9974e-06 - mse: 1.9974e-06 - val_loss: 1.9012e-06 - val_mse: 1.9012e-06 Epoch 166/700 142/142 [==============================] - 0s 2ms/step - loss: 2.0717e-06 - mse: 2.0717e-06 - val_loss: 1.9189e-06 - val_mse: 1.9189e-06 Epoch 167/700 142/142 [==============================] - 0s 2ms/step - loss: 2.0065e-06 - mse: 2.0065e-06 - val_loss: 1.8168e-06 - val_mse: 1.8168e-06 Epoch 168/700 142/142 [==============================] - 0s 2ms/step - loss: 1.9869e-06 - mse: 1.9869e-06 - val_loss: 1.9986e-06 - val_mse: 1.9986e-06 Epoch 169/700 142/142 [==============================] - 0s 2ms/step - loss: 1.9797e-06 - mse: 1.9797e-06 - val_loss: 1.7482e-06 - val_mse: 1.7482e-06 Epoch 170/700 142/142 [==============================] - 0s 2ms/step - loss: 1.9344e-06 - mse: 1.9344e-06 - val_loss: 1.8689e-06 - val_mse: 1.8689e-06 Epoch 171/700 142/142 [==============================] - 0s 2ms/step - loss: 1.9623e-06 - mse: 1.9623e-06 - val_loss: 1.9433e-06 - val_mse: 1.9433e-06 Epoch 172/700 142/142 [==============================] - 0s 2ms/step - loss: 2.0704e-06 - mse: 2.0704e-06 - val_loss: 1.7675e-06 - val_mse: 1.7675e-06 Epoch 173/700 142/142 [==============================] - 0s 2ms/step - loss: 1.9393e-06 - mse: 1.9393e-06 - val_loss: 2.1516e-06 - val_mse: 2.1516e-06 Epoch 174/700 142/142 [==============================] - 0s 2ms/step - loss: 1.9793e-06 - mse: 1.9793e-06 - val_loss: 1.7057e-06 - val_mse: 1.7057e-06 Epoch 175/700 142/142 [==============================] - 0s 2ms/step - loss: 1.9518e-06 - mse: 1.9518e-06 - val_loss: 1.8150e-06 - val_mse: 1.8150e-06 Epoch 176/700 142/142 [==============================] - 0s 2ms/step - loss: 1.9264e-06 - mse: 1.9264e-06 - val_loss: 2.0613e-06 - val_mse: 2.0613e-06 Epoch 177/700 142/142 [==============================] - 0s 2ms/step - loss: 1.8382e-06 - mse: 1.8382e-06 - val_loss: 1.8560e-06 - val_mse: 1.8560e-06 Epoch 178/700 142/142 [==============================] - 0s 2ms/step - loss: 1.8665e-06 - mse: 1.8665e-06 - val_loss: 1.6948e-06 - val_mse: 1.6948e-06 Epoch 179/700 142/142 [==============================] - 0s 2ms/step - loss: 1.9202e-06 - mse: 1.9202e-06 - val_loss: 2.0363e-06 - val_mse: 2.0363e-06 Epoch 180/700 142/142 [==============================] - 0s 2ms/step - loss: 1.8936e-06 - mse: 1.8936e-06 - val_loss: 1.8177e-06 - val_mse: 1.8177e-06 Epoch 181/700 142/142 [==============================] - 0s 2ms/step - loss: 1.9515e-06 - mse: 1.9515e-06 - val_loss: 1.7732e-06 - val_mse: 1.7732e-06 Epoch 182/700 142/142 [==============================] - 0s 2ms/step - loss: 1.9240e-06 - mse: 1.9240e-06 - val_loss: 1.8084e-06 - val_mse: 1.8084e-06 Epoch 183/700 142/142 [==============================] - 0s 2ms/step - loss: 1.8502e-06 - mse: 1.8502e-06 - val_loss: 1.7841e-06 - val_mse: 1.7841e-06 Epoch 184/700 142/142 [==============================] - 0s 2ms/step - loss: 1.8521e-06 - mse: 1.8521e-06 - val_loss: 1.6723e-06 - val_mse: 1.6723e-06 Epoch 185/700 142/142 [==============================] - 0s 2ms/step - loss: 1.8712e-06 - mse: 1.8712e-06 - val_loss: 1.6767e-06 - val_mse: 1.6767e-06 Epoch 186/700 142/142 [==============================] - 0s 2ms/step - loss: 1.8616e-06 - mse: 1.8616e-06 - val_loss: 1.7690e-06 - val_mse: 1.7690e-06 Epoch 187/700 142/142 [==============================] - 0s 2ms/step - loss: 1.8666e-06 - mse: 1.8666e-06 - val_loss: 1.8384e-06 - val_mse: 1.8384e-06 Epoch 188/700 142/142 [==============================] - 0s 2ms/step - loss: 1.8799e-06 - mse: 1.8799e-06 - val_loss: 2.3914e-06 - val_mse: 2.3914e-06 Epoch 189/700 142/142 [==============================] - 0s 2ms/step - loss: 1.9375e-06 - mse: 1.9375e-06 - val_loss: 2.5198e-06 - val_mse: 2.5198e-06 Epoch 190/700 142/142 [==============================] - 0s 2ms/step - loss: 1.9101e-06 - mse: 1.9101e-06 - val_loss: 1.6177e-06 - val_mse: 1.6177e-06 Epoch 191/700 142/142 [==============================] - 0s 2ms/step - loss: 1.7985e-06 - mse: 1.7985e-06 - val_loss: 1.9597e-06 - val_mse: 1.9597e-06 Epoch 192/700 142/142 [==============================] - 0s 2ms/step - loss: 1.7842e-06 - mse: 1.7842e-06 - val_loss: 1.7145e-06 - val_mse: 1.7145e-06 Epoch 193/700 142/142 [==============================] - 0s 2ms/step - loss: 1.7713e-06 - mse: 1.7713e-06 - val_loss: 1.5993e-06 - val_mse: 1.5993e-06 Epoch 194/700 142/142 [==============================] - 0s 2ms/step - loss: 1.8165e-06 - mse: 1.8165e-06 - val_loss: 1.7312e-06 - val_mse: 1.7312e-06 Epoch 195/700 142/142 [==============================] - 0s 2ms/step - loss: 1.8538e-06 - mse: 1.8538e-06 - val_loss: 1.6675e-06 - val_mse: 1.6675e-06 Epoch 196/700 142/142 [==============================] - 0s 2ms/step - loss: 1.7899e-06 - mse: 1.7899e-06 - val_loss: 1.6230e-06 - val_mse: 1.6230e-06 Epoch 197/700 142/142 [==============================] - 0s 2ms/step - loss: 1.8146e-06 - mse: 1.8146e-06 - val_loss: 1.6054e-06 - val_mse: 1.6054e-06 Epoch 198/700 142/142 [==============================] - 0s 2ms/step - loss: 1.7571e-06 - mse: 1.7571e-06 - val_loss: 1.6557e-06 - val_mse: 1.6557e-06 Epoch 199/700 142/142 [==============================] - 0s 2ms/step - loss: 1.8720e-06 - mse: 1.8720e-06 - val_loss: 2.1931e-06 - val_mse: 2.1931e-06 Epoch 200/700 142/142 [==============================] - 0s 2ms/step - loss: 1.8198e-06 - mse: 1.8198e-06 - val_loss: 1.6945e-06 - val_mse: 1.6945e-06 Epoch 201/700 142/142 [==============================] - 0s 2ms/step - loss: 1.7781e-06 - mse: 1.7781e-06 - val_loss: 2.0501e-06 - val_mse: 2.0501e-06 Epoch 202/700 142/142 [==============================] - 0s 2ms/step - loss: 1.8690e-06 - mse: 1.8690e-06 - val_loss: 1.7467e-06 - val_mse: 1.7467e-06 Epoch 203/700 142/142 [==============================] - 0s 2ms/step - loss: 1.7713e-06 - mse: 1.7713e-06 - val_loss: 1.8343e-06 - val_mse: 1.8343e-06 Epoch 204/700 142/142 [==============================] - 0s 2ms/step - loss: 1.8336e-06 - mse: 1.8336e-06 - val_loss: 2.2682e-06 - val_mse: 2.2682e-06 Epoch 205/700 142/142 [==============================] - 0s 2ms/step - loss: 1.8136e-06 - mse: 1.8136e-06 - val_loss: 1.7124e-06 - val_mse: 1.7124e-06 Epoch 206/700 142/142 [==============================] - 0s 2ms/step - loss: 1.7819e-06 - mse: 1.7819e-06 - val_loss: 1.5719e-06 - val_mse: 1.5719e-06 Epoch 207/700 142/142 [==============================] - 0s 2ms/step - loss: 1.7781e-06 - mse: 1.7781e-06 - val_loss: 1.8519e-06 - val_mse: 1.8519e-06 Epoch 208/700 142/142 [==============================] - 0s 2ms/step - loss: 1.8092e-06 - mse: 1.8092e-06 - val_loss: 1.5572e-06 - val_mse: 1.5572e-06 Epoch 209/700 142/142 [==============================] - 0s 2ms/step - loss: 1.7379e-06 - mse: 1.7379e-06 - val_loss: 1.6350e-06 - val_mse: 1.6350e-06 Epoch 210/700 142/142 [==============================] - 0s 2ms/step - loss: 1.7234e-06 - mse: 1.7234e-06 - val_loss: 1.5766e-06 - val_mse: 1.5766e-06 Epoch 211/700 142/142 [==============================] - 0s 3ms/step - loss: 1.7342e-06 - mse: 1.7342e-06 - val_loss: 1.6439e-06 - val_mse: 1.6439e-06 Epoch 212/700 142/142 [==============================] - 0s 3ms/step - loss: 1.7840e-06 - mse: 1.7840e-06 - val_loss: 1.8503e-06 - val_mse: 1.8503e-06 Epoch 213/700 142/142 [==============================] - 0s 2ms/step - loss: 1.7472e-06 - mse: 1.7472e-06 - val_loss: 1.7141e-06 - val_mse: 1.7141e-06 Epoch 214/700 142/142 [==============================] - 0s 2ms/step - loss: 1.8294e-06 - mse: 1.8294e-06 - val_loss: 1.5600e-06 - val_mse: 1.5600e-06 Epoch 215/700 142/142 [==============================] - 0s 2ms/step - loss: 1.7577e-06 - mse: 1.7577e-06 - val_loss: 1.9313e-06 - val_mse: 1.9313e-06 Epoch 216/700 142/142 [==============================] - 0s 2ms/step - loss: 1.7404e-06 - mse: 1.7404e-06 - val_loss: 2.2460e-06 - val_mse: 2.2460e-06 Epoch 217/700 142/142 [==============================] - 0s 2ms/step - loss: 1.7825e-06 - mse: 1.7825e-06 - val_loss: 1.8295e-06 - val_mse: 1.8295e-06 Epoch 218/700 142/142 [==============================] - 0s 2ms/step - loss: 1.7438e-06 - mse: 1.7438e-06 - val_loss: 1.5651e-06 - val_mse: 1.5651e-06 Epoch 219/700 142/142 [==============================] - 0s 2ms/step - loss: 1.7781e-06 - mse: 1.7781e-06 - val_loss: 1.5920e-06 - val_mse: 1.5920e-06 Epoch 220/700 142/142 [==============================] - 0s 2ms/step - loss: 1.6681e-06 - mse: 1.6681e-06 - val_loss: 1.6235e-06 - val_mse: 1.6235e-06 Epoch 221/700 142/142 [==============================] - 0s 2ms/step - loss: 1.7035e-06 - mse: 1.7035e-06 - val_loss: 1.9393e-06 - val_mse: 1.9393e-06 Epoch 222/700 142/142 [==============================] - 0s 2ms/step - loss: 1.9324e-06 - mse: 1.9324e-06 - val_loss: 1.5876e-06 - val_mse: 1.5876e-06 Epoch 223/700 142/142 [==============================] - 0s 2ms/step - loss: 1.7993e-06 - mse: 1.7993e-06 - val_loss: 1.6493e-06 - val_mse: 1.6493e-06 Epoch 224/700 142/142 [==============================] - 0s 2ms/step - loss: 1.6789e-06 - mse: 1.6789e-06 - val_loss: 1.7913e-06 - val_mse: 1.7913e-06 Epoch 225/700 142/142 [==============================] - 0s 2ms/step - loss: 1.7515e-06 - mse: 1.7515e-06 - val_loss: 1.7757e-06 - val_mse: 1.7757e-06 Epoch 226/700 142/142 [==============================] - 0s 2ms/step - loss: 1.7096e-06 - mse: 1.7096e-06 - val_loss: 1.7952e-06 - val_mse: 1.7952e-06 Epoch 227/700 142/142 [==============================] - 0s 2ms/step - loss: 1.7158e-06 - mse: 1.7158e-06 - val_loss: 1.6339e-06 - val_mse: 1.6339e-06 Epoch 228/700 142/142 [==============================] - 0s 2ms/step - loss: 1.7398e-06 - mse: 1.7398e-06 - val_loss: 1.6639e-06 - val_mse: 1.6639e-06 Epoch 229/700 142/142 [==============================] - 0s 2ms/step - loss: 1.7610e-06 - mse: 1.7610e-06 - val_loss: 2.7305e-06 - val_mse: 2.7305e-06 Epoch 230/700 142/142 [==============================] - 0s 2ms/step - loss: 1.8694e-06 - mse: 1.8694e-06 - val_loss: 1.5846e-06 - val_mse: 1.5846e-06 Epoch 231/700 142/142 [==============================] - 0s 2ms/step - loss: 1.6318e-06 - mse: 1.6318e-06 - val_loss: 1.6638e-06 - val_mse: 1.6638e-06 Epoch 232/700 142/142 [==============================] - 0s 2ms/step - loss: 1.6827e-06 - mse: 1.6827e-06 - val_loss: 2.0172e-06 - val_mse: 2.0172e-06 Epoch 233/700 142/142 [==============================] - 0s 2ms/step - loss: 1.6748e-06 - mse: 1.6748e-06 - val_loss: 1.5042e-06 - val_mse: 1.5042e-06 Epoch 234/700 142/142 [==============================] - 0s 2ms/step - loss: 1.6963e-06 - mse: 1.6963e-06 - val_loss: 1.4959e-06 - val_mse: 1.4959e-06 Epoch 235/700 142/142 [==============================] - 0s 2ms/step - loss: 1.6453e-06 - mse: 1.6453e-06 - val_loss: 1.7960e-06 - val_mse: 1.7960e-06 Epoch 236/700 142/142 [==============================] - 0s 2ms/step - loss: 1.7306e-06 - mse: 1.7306e-06 - val_loss: 1.5997e-06 - val_mse: 1.5997e-06 Epoch 237/700 142/142 [==============================] - 0s 2ms/step - loss: 1.6961e-06 - mse: 1.6961e-06 - val_loss: 1.6318e-06 - val_mse: 1.6318e-06 Epoch 238/700 142/142 [==============================] - 0s 2ms/step - loss: 1.7337e-06 - mse: 1.7337e-06 - val_loss: 2.1596e-06 - val_mse: 2.1596e-06 Epoch 239/700 142/142 [==============================] - 0s 2ms/step - loss: 1.7378e-06 - mse: 1.7378e-06 - val_loss: 1.5988e-06 - val_mse: 1.5988e-06 Epoch 240/700 142/142 [==============================] - 0s 2ms/step - loss: 1.6967e-06 - mse: 1.6967e-06 - val_loss: 1.5699e-06 - val_mse: 1.5699e-06 Epoch 241/700 142/142 [==============================] - 0s 2ms/step - loss: 1.7402e-06 - mse: 1.7402e-06 - val_loss: 1.7507e-06 - val_mse: 1.7507e-06 Epoch 242/700 142/142 [==============================] - 0s 2ms/step - loss: 1.6738e-06 - mse: 1.6738e-06 - val_loss: 1.5954e-06 - val_mse: 1.5954e-06 Epoch 243/700 142/142 [==============================] - 0s 2ms/step - loss: 1.6111e-06 - mse: 1.6111e-06 - val_loss: 1.8413e-06 - val_mse: 1.8413e-06 Epoch 244/700 142/142 [==============================] - 0s 2ms/step - loss: 1.6955e-06 - mse: 1.6955e-06 - val_loss: 1.4800e-06 - val_mse: 1.4800e-06 Epoch 245/700 142/142 [==============================] - 0s 2ms/step - loss: 1.5998e-06 - mse: 1.5998e-06 - val_loss: 1.5660e-06 - val_mse: 1.5660e-06 Epoch 246/700 142/142 [==============================] - 0s 2ms/step - loss: 1.6697e-06 - mse: 1.6697e-06 - val_loss: 1.5123e-06 - val_mse: 1.5123e-06 Epoch 247/700 142/142 [==============================] - 0s 2ms/step - loss: 1.6274e-06 - mse: 1.6274e-06 - val_loss: 1.5876e-06 - val_mse: 1.5876e-06 Epoch 248/700 142/142 [==============================] - 0s 2ms/step - loss: 1.6403e-06 - mse: 1.6403e-06 - val_loss: 1.5390e-06 - val_mse: 1.5390e-06 Epoch 249/700 142/142 [==============================] - 0s 2ms/step - loss: 1.6061e-06 - mse: 1.6061e-06 - val_loss: 1.6170e-06 - val_mse: 1.6170e-06 Epoch 250/700 142/142 [==============================] - 0s 2ms/step - loss: 1.6596e-06 - mse: 1.6596e-06 - val_loss: 1.4746e-06 - val_mse: 1.4746e-06 Epoch 251/700 142/142 [==============================] - 0s 2ms/step - loss: 1.5832e-06 - mse: 1.5832e-06 - val_loss: 1.6225e-06 - val_mse: 1.6225e-06 Epoch 252/700 142/142 [==============================] - 0s 2ms/step - loss: 1.6855e-06 - mse: 1.6855e-06 - val_loss: 1.5883e-06 - val_mse: 1.5883e-06 Epoch 253/700 142/142 [==============================] - 0s 2ms/step - loss: 1.6816e-06 - mse: 1.6816e-06 - val_loss: 1.5380e-06 - val_mse: 1.5380e-06 Epoch 254/700 142/142 [==============================] - 0s 2ms/step - loss: 1.6046e-06 - mse: 1.6046e-06 - val_loss: 1.4227e-06 - val_mse: 1.4227e-06 Epoch 255/700 142/142 [==============================] - 0s 2ms/step - loss: 1.6582e-06 - mse: 1.6582e-06 - val_loss: 1.7431e-06 - val_mse: 1.7431e-06 Epoch 256/700 142/142 [==============================] - 0s 2ms/step - loss: 1.6359e-06 - mse: 1.6359e-06 - val_loss: 2.1848e-06 - val_mse: 2.1848e-06 Epoch 257/700 142/142 [==============================] - 0s 2ms/step - loss: 1.6881e-06 - mse: 1.6881e-06 - val_loss: 1.4100e-06 - val_mse: 1.4100e-06 Epoch 258/700 142/142 [==============================] - 0s 2ms/step - loss: 1.5395e-06 - mse: 1.5395e-06 - val_loss: 1.5482e-06 - val_mse: 1.5482e-06 Epoch 259/700 142/142 [==============================] - 0s 2ms/step - loss: 1.5904e-06 - mse: 1.5904e-06 - val_loss: 1.5028e-06 - val_mse: 1.5028e-06 Epoch 260/700 142/142 [==============================] - 0s 2ms/step - loss: 1.5497e-06 - mse: 1.5497e-06 - val_loss: 2.2848e-06 - val_mse: 2.2848e-06 Epoch 261/700 142/142 [==============================] - 0s 2ms/step - loss: 1.5922e-06 - mse: 1.5922e-06 - val_loss: 1.4268e-06 - val_mse: 1.4268e-06 Epoch 262/700 142/142 [==============================] - 0s 2ms/step - loss: 1.5178e-06 - mse: 1.5178e-06 - val_loss: 1.5017e-06 - val_mse: 1.5017e-06 Epoch 263/700 142/142 [==============================] - 0s 2ms/step - loss: 1.6515e-06 - mse: 1.6515e-06 - val_loss: 1.4079e-06 - val_mse: 1.4079e-06 Epoch 264/700 142/142 [==============================] - 0s 2ms/step - loss: 1.5721e-06 - mse: 1.5721e-06 - val_loss: 1.5650e-06 - val_mse: 1.5650e-06 Epoch 265/700 142/142 [==============================] - 0s 2ms/step - loss: 1.5876e-06 - mse: 1.5876e-06 - val_loss: 1.5835e-06 - val_mse: 1.5835e-06 Epoch 266/700 142/142 [==============================] - 0s 2ms/step - loss: 1.5988e-06 - mse: 1.5988e-06 - val_loss: 1.9810e-06 - val_mse: 1.9810e-06 Epoch 267/700 142/142 [==============================] - 0s 2ms/step - loss: 1.5888e-06 - mse: 1.5888e-06 - val_loss: 1.4976e-06 - val_mse: 1.4976e-06 Epoch 268/700 142/142 [==============================] - 0s 2ms/step - loss: 1.5544e-06 - mse: 1.5544e-06 - val_loss: 1.3969e-06 - val_mse: 1.3969e-06 Epoch 269/700 142/142 [==============================] - 0s 2ms/step - loss: 1.5834e-06 - mse: 1.5834e-06 - val_loss: 1.4274e-06 - val_mse: 1.4274e-06 Epoch 270/700 142/142 [==============================] - 0s 2ms/step - loss: 1.4822e-06 - mse: 1.4822e-06 - val_loss: 1.4216e-06 - val_mse: 1.4216e-06 Epoch 271/700 142/142 [==============================] - 0s 2ms/step - loss: 1.5924e-06 - mse: 1.5924e-06 - val_loss: 1.4540e-06 - val_mse: 1.4540e-06 Epoch 272/700 142/142 [==============================] - 0s 2ms/step - loss: 1.4653e-06 - mse: 1.4653e-06 - val_loss: 1.3228e-06 - val_mse: 1.3228e-06 Epoch 273/700 142/142 [==============================] - 0s 2ms/step - loss: 1.4887e-06 - mse: 1.4887e-06 - val_loss: 1.3752e-06 - val_mse: 1.3752e-06 Epoch 274/700 142/142 [==============================] - 0s 2ms/step - loss: 1.5132e-06 - mse: 1.5132e-06 - val_loss: 1.9071e-06 - val_mse: 1.9071e-06 Epoch 275/700 142/142 [==============================] - 0s 2ms/step - loss: 1.6019e-06 - mse: 1.6019e-06 - val_loss: 1.7927e-06 - val_mse: 1.7927e-06 Epoch 276/700 142/142 [==============================] - 0s 2ms/step - loss: 1.5791e-06 - mse: 1.5791e-06 - val_loss: 1.3494e-06 - val_mse: 1.3494e-06 Epoch 277/700 142/142 [==============================] - 0s 2ms/step - loss: 1.4894e-06 - mse: 1.4894e-06 - val_loss: 1.3480e-06 - val_mse: 1.3480e-06 Epoch 278/700 142/142 [==============================] - 0s 2ms/step - loss: 1.5351e-06 - mse: 1.5351e-06 - val_loss: 1.3183e-06 - val_mse: 1.3183e-06 Epoch 279/700 142/142 [==============================] - 0s 2ms/step - loss: 1.5001e-06 - mse: 1.5001e-06 - val_loss: 1.2960e-06 - val_mse: 1.2960e-06 Epoch 280/700 142/142 [==============================] - 0s 2ms/step - loss: 1.4503e-06 - mse: 1.4503e-06 - val_loss: 1.4354e-06 - val_mse: 1.4354e-06 Epoch 281/700 142/142 [==============================] - 0s 2ms/step - loss: 1.4357e-06 - mse: 1.4357e-06 - val_loss: 1.2998e-06 - val_mse: 1.2998e-06 Epoch 282/700 142/142 [==============================] - 0s 2ms/step - loss: 1.4523e-06 - mse: 1.4523e-06 - val_loss: 1.2904e-06 - val_mse: 1.2904e-06 Epoch 283/700 142/142 [==============================] - 0s 2ms/step - loss: 1.4965e-06 - mse: 1.4965e-06 - val_loss: 1.3368e-06 - val_mse: 1.3368e-06 Epoch 284/700 142/142 [==============================] - 0s 2ms/step - loss: 1.4211e-06 - mse: 1.4211e-06 - val_loss: 1.9354e-06 - val_mse: 1.9354e-06 Epoch 285/700 142/142 [==============================] - 0s 2ms/step - loss: 1.5143e-06 - mse: 1.5143e-06 - val_loss: 1.3185e-06 - val_mse: 1.3185e-06 Epoch 286/700 142/142 [==============================] - 0s 2ms/step - loss: 1.4138e-06 - mse: 1.4138e-06 - val_loss: 1.3314e-06 - val_mse: 1.3314e-06 Epoch 287/700 142/142 [==============================] - 0s 2ms/step - loss: 1.3744e-06 - mse: 1.3744e-06 - val_loss: 1.4481e-06 - val_mse: 1.4481e-06 Epoch 288/700 142/142 [==============================] - 0s 2ms/step - loss: 1.3585e-06 - mse: 1.3585e-06 - val_loss: 1.3310e-06 - val_mse: 1.3310e-06 Epoch 289/700 142/142 [==============================] - 0s 2ms/step - loss: 1.3471e-06 - mse: 1.3471e-06 - val_loss: 1.2076e-06 - val_mse: 1.2076e-06 Epoch 290/700 142/142 [==============================] - 0s 2ms/step - loss: 1.3697e-06 - mse: 1.3697e-06 - val_loss: 1.2694e-06 - val_mse: 1.2694e-06 Epoch 291/700 142/142 [==============================] - 0s 2ms/step - loss: 1.3511e-06 - mse: 1.3511e-06 - val_loss: 1.3615e-06 - val_mse: 1.3615e-06 Epoch 292/700 142/142 [==============================] - 0s 2ms/step - loss: 1.4013e-06 - mse: 1.4013e-06 - val_loss: 1.1871e-06 - val_mse: 1.1871e-06 Epoch 293/700 142/142 [==============================] - 0s 2ms/step - loss: 1.2776e-06 - mse: 1.2776e-06 - val_loss: 1.1773e-06 - val_mse: 1.1773e-06 Epoch 294/700 142/142 [==============================] - 0s 2ms/step - loss: 1.3219e-06 - mse: 1.3219e-06 - val_loss: 1.1459e-06 - val_mse: 1.1459e-06 Epoch 295/700 142/142 [==============================] - 0s 2ms/step - loss: 1.3442e-06 - mse: 1.3442e-06 - val_loss: 1.3445e-06 - val_mse: 1.3445e-06 Epoch 296/700 142/142 [==============================] - 0s 2ms/step - loss: 1.3220e-06 - mse: 1.3220e-06 - val_loss: 1.2926e-06 - val_mse: 1.2926e-06 Epoch 297/700 142/142 [==============================] - 0s 2ms/step - loss: 1.2998e-06 - mse: 1.2998e-06 - val_loss: 1.3618e-06 - val_mse: 1.3618e-06 Epoch 298/700 142/142 [==============================] - 0s 2ms/step - loss: 1.2314e-06 - mse: 1.2314e-06 - val_loss: 1.1583e-06 - val_mse: 1.1583e-06 Epoch 299/700 142/142 [==============================] - 0s 2ms/step - loss: 1.2576e-06 - mse: 1.2576e-06 - val_loss: 1.6748e-06 - val_mse: 1.6748e-06 Epoch 300/700 142/142 [==============================] - 0s 2ms/step - loss: 1.2327e-06 - mse: 1.2327e-06 - val_loss: 1.1311e-06 - val_mse: 1.1311e-06 Epoch 301/700 142/142 [==============================] - 0s 2ms/step - loss: 1.4097e-06 - mse: 1.4097e-06 - val_loss: 1.1043e-06 - val_mse: 1.1043e-06 Epoch 302/700 142/142 [==============================] - 0s 2ms/step - loss: 1.2062e-06 - mse: 1.2062e-06 - val_loss: 1.1684e-06 - val_mse: 1.1684e-06 Epoch 303/700 142/142 [==============================] - 0s 2ms/step - loss: 1.1905e-06 - mse: 1.1905e-06 - val_loss: 1.0749e-06 - val_mse: 1.0749e-06 Epoch 304/700 142/142 [==============================] - 0s 2ms/step - loss: 1.1415e-06 - mse: 1.1415e-06 - val_loss: 1.3599e-06 - val_mse: 1.3599e-06 Epoch 305/700 142/142 [==============================] - 0s 2ms/step - loss: 1.2144e-06 - mse: 1.2144e-06 - val_loss: 1.2149e-06 - val_mse: 1.2149e-06 Epoch 306/700 142/142 [==============================] - 0s 2ms/step - loss: 1.1535e-06 - mse: 1.1535e-06 - val_loss: 1.2180e-06 - val_mse: 1.2180e-06 Epoch 307/700 142/142 [==============================] - 0s 2ms/step - loss: 1.1327e-06 - mse: 1.1327e-06 - val_loss: 9.9884e-07 - val_mse: 9.9884e-07 Epoch 308/700 142/142 [==============================] - 0s 2ms/step - loss: 1.1291e-06 - mse: 1.1291e-06 - val_loss: 9.9242e-07 - val_mse: 9.9242e-07 Epoch 309/700 142/142 [==============================] - 0s 2ms/step - loss: 1.1364e-06 - mse: 1.1364e-06 - val_loss: 1.5889e-06 - val_mse: 1.5889e-06 Epoch 310/700 142/142 [==============================] - 0s 2ms/step - loss: 1.1421e-06 - mse: 1.1421e-06 - val_loss: 9.9403e-07 - val_mse: 9.9403e-07 Epoch 311/700 142/142 [==============================] - 0s 2ms/step - loss: 1.0659e-06 - mse: 1.0659e-06 - val_loss: 1.0559e-06 - val_mse: 1.0559e-06 Epoch 312/700 142/142 [==============================] - 0s 2ms/step - loss: 1.0818e-06 - mse: 1.0818e-06 - val_loss: 9.5775e-07 - val_mse: 9.5775e-07 Epoch 313/700 142/142 [==============================] - 0s 2ms/step - loss: 1.1300e-06 - mse: 1.1300e-06 - val_loss: 1.7114e-06 - val_mse: 1.7114e-06 Epoch 314/700 142/142 [==============================] - 0s 2ms/step - loss: 1.1200e-06 - mse: 1.1200e-06 - val_loss: 9.4727e-07 - val_mse: 9.4727e-07 Epoch 315/700 142/142 [==============================] - 0s 2ms/step - loss: 1.0443e-06 - mse: 1.0443e-06 - val_loss: 9.8706e-07 - val_mse: 9.8706e-07 Epoch 316/700 142/142 [==============================] - 0s 2ms/step - loss: 1.1195e-06 - mse: 1.1195e-06 - val_loss: 9.5262e-07 - val_mse: 9.5262e-07 Epoch 317/700 142/142 [==============================] - 0s 2ms/step - loss: 1.0479e-06 - mse: 1.0479e-06 - val_loss: 1.0873e-06 - val_mse: 1.0873e-06 Epoch 318/700 142/142 [==============================] - 0s 2ms/step - loss: 1.0668e-06 - mse: 1.0668e-06 - val_loss: 9.1515e-07 - val_mse: 9.1515e-07 Epoch 319/700 142/142 [==============================] - 0s 2ms/step - loss: 9.8033e-07 - mse: 9.8033e-07 - val_loss: 9.3580e-07 - val_mse: 9.3580e-07 Epoch 320/700 142/142 [==============================] - 0s 2ms/step - loss: 1.0340e-06 - mse: 1.0340e-06 - val_loss: 1.0126e-06 - val_mse: 1.0126e-06 Epoch 321/700 142/142 [==============================] - 0s 2ms/step - loss: 1.0429e-06 - mse: 1.0429e-06 - val_loss: 1.3139e-06 - val_mse: 1.3139e-06 Epoch 322/700 142/142 [==============================] - 0s 2ms/step - loss: 1.0346e-06 - mse: 1.0346e-06 - val_loss: 1.2621e-06 - val_mse: 1.2621e-06 Epoch 323/700 142/142 [==============================] - 0s 2ms/step - loss: 1.0086e-06 - mse: 1.0086e-06 - val_loss: 8.8702e-07 - val_mse: 8.8702e-07 Epoch 324/700 142/142 [==============================] - 0s 2ms/step - loss: 1.0323e-06 - mse: 1.0323e-06 - val_loss: 8.9923e-07 - val_mse: 8.9923e-07 Epoch 325/700 142/142 [==============================] - 0s 2ms/step - loss: 9.9674e-07 - mse: 9.9674e-07 - val_loss: 8.9350e-07 - val_mse: 8.9350e-07 Epoch 326/700 142/142 [==============================] - 0s 2ms/step - loss: 9.4936e-07 - mse: 9.4936e-07 - val_loss: 9.9111e-07 - val_mse: 9.9111e-07 Epoch 327/700 142/142 [==============================] - 0s 2ms/step - loss: 1.0613e-06 - mse: 1.0613e-06 - val_loss: 9.6570e-07 - val_mse: 9.6570e-07 Epoch 328/700 142/142 [==============================] - 0s 2ms/step - loss: 9.2965e-07 - mse: 9.2965e-07 - val_loss: 1.0079e-06 - val_mse: 1.0079e-06 Epoch 329/700 142/142 [==============================] - 0s 2ms/step - loss: 1.0548e-06 - mse: 1.0548e-06 - val_loss: 8.6792e-07 - val_mse: 8.6792e-07 Epoch 330/700 142/142 [==============================] - 0s 2ms/step - loss: 9.9834e-07 - mse: 9.9834e-07 - val_loss: 9.2165e-07 - val_mse: 9.2165e-07 Epoch 331/700 142/142 [==============================] - 0s 2ms/step - loss: 9.5210e-07 - mse: 9.5210e-07 - val_loss: 8.6927e-07 - val_mse: 8.6927e-07 Epoch 332/700 142/142 [==============================] - 0s 2ms/step - loss: 9.1985e-07 - mse: 9.1985e-07 - val_loss: 1.0624e-06 - val_mse: 1.0624e-06 Epoch 333/700 142/142 [==============================] - 0s 2ms/step - loss: 8.8652e-07 - mse: 8.8652e-07 - val_loss: 7.9527e-07 - val_mse: 7.9527e-07 Epoch 334/700 142/142 [==============================] - 0s 2ms/step - loss: 9.0718e-07 - mse: 9.0718e-07 - val_loss: 1.0489e-06 - val_mse: 1.0489e-06 Epoch 335/700 142/142 [==============================] - 0s 2ms/step - loss: 8.9011e-07 - mse: 8.9011e-07 - val_loss: 1.0333e-06 - val_mse: 1.0333e-06 Epoch 336/700 142/142 [==============================] - 0s 2ms/step - loss: 8.7710e-07 - mse: 8.7710e-07 - val_loss: 1.4684e-06 - val_mse: 1.4684e-06 Epoch 337/700 142/142 [==============================] - 0s 2ms/step - loss: 8.2898e-07 - mse: 8.2898e-07 - val_loss: 8.5127e-07 - val_mse: 8.5127e-07 Epoch 338/700 142/142 [==============================] - 0s 2ms/step - loss: 8.7810e-07 - mse: 8.7810e-07 - val_loss: 7.7736e-07 - val_mse: 7.7736e-07 Epoch 339/700 142/142 [==============================] - 0s 2ms/step - loss: 1.1350e-06 - mse: 1.1350e-06 - val_loss: 7.9520e-07 - val_mse: 7.9520e-07 Epoch 340/700 142/142 [==============================] - 0s 2ms/step - loss: 8.0444e-07 - mse: 8.0444e-07 - val_loss: 9.1199e-07 - val_mse: 9.1199e-07 Epoch 341/700 142/142 [==============================] - 0s 2ms/step - loss: 8.4070e-07 - mse: 8.4070e-07 - val_loss: 8.2165e-07 - val_mse: 8.2165e-07 Epoch 342/700 142/142 [==============================] - 0s 2ms/step - loss: 8.0311e-07 - mse: 8.0311e-07 - val_loss: 7.7351e-07 - val_mse: 7.7351e-07 Epoch 343/700 142/142 [==============================] - 0s 2ms/step - loss: 8.1178e-07 - mse: 8.1178e-07 - val_loss: 7.6994e-07 - val_mse: 7.6994e-07 Epoch 344/700 142/142 [==============================] - 0s 2ms/step - loss: 8.7785e-07 - mse: 8.7785e-07 - val_loss: 2.0417e-06 - val_mse: 2.0417e-06 Epoch 345/700 142/142 [==============================] - 0s 2ms/step - loss: 8.2921e-07 - mse: 8.2921e-07 - val_loss: 8.3213e-07 - val_mse: 8.3213e-07 Epoch 346/700 142/142 [==============================] - 0s 2ms/step - loss: 7.7014e-07 - mse: 7.7014e-07 - val_loss: 9.2369e-07 - val_mse: 9.2369e-07 Epoch 347/700 142/142 [==============================] - 0s 2ms/step - loss: 8.3109e-07 - mse: 8.3109e-07 - val_loss: 7.0241e-07 - val_mse: 7.0241e-07 Epoch 348/700 142/142 [==============================] - 0s 2ms/step - loss: 8.1298e-07 - mse: 8.1298e-07 - val_loss: 7.3897e-07 - val_mse: 7.3897e-07 Epoch 349/700 142/142 [==============================] - 0s 2ms/step - loss: 8.8706e-07 - mse: 8.8706e-07 - val_loss: 9.1644e-07 - val_mse: 9.1644e-07 Epoch 350/700 142/142 [==============================] - 0s 2ms/step - loss: 8.2616e-07 - mse: 8.2616e-07 - val_loss: 7.7195e-07 - val_mse: 7.7195e-07 Epoch 351/700 142/142 [==============================] - 0s 2ms/step - loss: 8.1528e-07 - mse: 8.1528e-07 - val_loss: 7.6620e-07 - val_mse: 7.6620e-07 Epoch 352/700 142/142 [==============================] - 0s 2ms/step - loss: 8.2316e-07 - mse: 8.2316e-07 - val_loss: 1.1676e-06 - val_mse: 1.1676e-06 Epoch 353/700 142/142 [==============================] - 0s 2ms/step - loss: 8.8990e-07 - mse: 8.8990e-07 - val_loss: 9.0672e-07 - val_mse: 9.0672e-07 Epoch 354/700 142/142 [==============================] - 0s 2ms/step - loss: 7.7826e-07 - mse: 7.7826e-07 - val_loss: 8.0776e-07 - val_mse: 8.0776e-07 Epoch 355/700 142/142 [==============================] - 0s 2ms/step - loss: 8.0666e-07 - mse: 8.0666e-07 - val_loss: 1.0477e-06 - val_mse: 1.0477e-06 Epoch 356/700 142/142 [==============================] - 0s 2ms/step - loss: 8.1057e-07 - mse: 8.1057e-07 - val_loss: 1.0240e-06 - val_mse: 1.0240e-06 Epoch 357/700 142/142 [==============================] - 0s 2ms/step - loss: 8.1429e-07 - mse: 8.1429e-07 - val_loss: 1.5304e-06 - val_mse: 1.5304e-06 Epoch 358/700 142/142 [==============================] - 0s 2ms/step - loss: 8.9164e-07 - mse: 8.9164e-07 - val_loss: 7.8291e-07 - val_mse: 7.8291e-07 Epoch 359/700 142/142 [==============================] - 0s 2ms/step - loss: 8.7522e-07 - mse: 8.7522e-07 - val_loss: 7.9454e-07 - val_mse: 7.9454e-07 Epoch 360/700 142/142 [==============================] - 0s 2ms/step - loss: 7.7636e-07 - mse: 7.7636e-07 - val_loss: 8.1746e-07 - val_mse: 8.1746e-07 Epoch 361/700 142/142 [==============================] - 0s 2ms/step - loss: 8.9223e-07 - mse: 8.9223e-07 - val_loss: 1.0513e-06 - val_mse: 1.0513e-06 Epoch 362/700 142/142 [==============================] - 0s 2ms/step - loss: 7.8900e-07 - mse: 7.8900e-07 - val_loss: 7.8554e-07 - val_mse: 7.8554e-07 Epoch 363/700 142/142 [==============================] - 0s 2ms/step - loss: 7.8461e-07 - mse: 7.8461e-07 - val_loss: 1.0150e-06 - val_mse: 1.0150e-06 Epoch 364/700 142/142 [==============================] - 0s 2ms/step - loss: 8.4325e-07 - mse: 8.4325e-07 - val_loss: 9.9615e-07 - val_mse: 9.9615e-07 Epoch 365/700 142/142 [==============================] - 0s 2ms/step - loss: 7.8726e-07 - mse: 7.8726e-07 - val_loss: 8.7058e-07 - val_mse: 8.7058e-07 Epoch 366/700 142/142 [==============================] - 0s 2ms/step - loss: 8.1659e-07 - mse: 8.1659e-07 - val_loss: 9.0413e-07 - val_mse: 9.0413e-07 Epoch 367/700 142/142 [==============================] - 0s 2ms/step - loss: 8.5820e-07 - mse: 8.5820e-07 - val_loss: 7.3585e-07 - val_mse: 7.3585e-07 Epoch 368/700 142/142 [==============================] - 0s 2ms/step - loss: 8.9448e-07 - mse: 8.9448e-07 - val_loss: 7.0963e-07 - val_mse: 7.0963e-07 Epoch 369/700 142/142 [==============================] - 0s 2ms/step - loss: 8.5706e-07 - mse: 8.5706e-07 - val_loss: 8.5171e-07 - val_mse: 8.5171e-07 Epoch 370/700 142/142 [==============================] - 0s 2ms/step - loss: 8.0615e-07 - mse: 8.0615e-07 - val_loss: 7.9439e-07 - val_mse: 7.9439e-07 Epoch 371/700 142/142 [==============================] - 0s 2ms/step - loss: 7.8170e-07 - mse: 7.8170e-07 - val_loss: 8.1715e-07 - val_mse: 8.1715e-07 Epoch 372/700 142/142 [==============================] - 0s 2ms/step - loss: 8.4454e-07 - mse: 8.4454e-07 - val_loss: 8.6370e-07 - val_mse: 8.6370e-07 Epoch 373/700 142/142 [==============================] - 0s 2ms/step - loss: 7.8911e-07 - mse: 7.8911e-07 - val_loss: 7.5578e-07 - val_mse: 7.5578e-07 Epoch 374/700 142/142 [==============================] - 0s 2ms/step - loss: 8.2841e-07 - mse: 8.2841e-07 - val_loss: 7.9511e-07 - val_mse: 7.9511e-07 Epoch 375/700 142/142 [==============================] - 0s 2ms/step - loss: 8.8004e-07 - mse: 8.8004e-07 - val_loss: 1.0129e-06 - val_mse: 1.0129e-06 Epoch 376/700 142/142 [==============================] - 0s 2ms/step - loss: 8.5530e-07 - mse: 8.5530e-07 - val_loss: 8.3400e-07 - val_mse: 8.3400e-07 Epoch 377/700 142/142 [==============================] - 0s 2ms/step - loss: 7.7209e-07 - mse: 7.7209e-07 - val_loss: 8.0430e-07 - val_mse: 8.0430e-07 Epoch 378/700 142/142 [==============================] - 0s 2ms/step - loss: 8.1997e-07 - mse: 8.1997e-07 - val_loss: 8.9212e-07 - val_mse: 8.9212e-07 Epoch 379/700 142/142 [==============================] - 0s 2ms/step - loss: 7.7830e-07 - mse: 7.7830e-07 - val_loss: 8.5280e-07 - val_mse: 8.5280e-07 Epoch 380/700 142/142 [==============================] - 0s 2ms/step - loss: 8.0102e-07 - mse: 8.0102e-07 - val_loss: 8.3789e-07 - val_mse: 8.3789e-07 Epoch 381/700 142/142 [==============================] - 0s 2ms/step - loss: 8.0347e-07 - mse: 8.0347e-07 - val_loss: 9.4183e-07 - val_mse: 9.4183e-07 Epoch 382/700 142/142 [==============================] - 0s 2ms/step - loss: 9.0239e-07 - mse: 9.0239e-07 - val_loss: 7.5127e-07 - val_mse: 7.5127e-07 Epoch 383/700 142/142 [==============================] - 0s 2ms/step - loss: 7.8123e-07 - mse: 7.8123e-07 - val_loss: 7.3560e-07 - val_mse: 7.3560e-07 Epoch 384/700 142/142 [==============================] - 0s 2ms/step - loss: 7.5776e-07 - mse: 7.5776e-07 - val_loss: 7.2054e-07 - val_mse: 7.2054e-07 Epoch 385/700 142/142 [==============================] - 0s 3ms/step - loss: 8.3697e-07 - mse: 8.3697e-07 - val_loss: 7.2343e-07 - val_mse: 7.2343e-07 Epoch 386/700 142/142 [==============================] - 0s 2ms/step - loss: 7.9318e-07 - mse: 7.9318e-07 - val_loss: 8.3168e-07 - val_mse: 8.3168e-07 Epoch 387/700 142/142 [==============================] - 0s 2ms/step - loss: 7.6731e-07 - mse: 7.6731e-07 - val_loss: 7.8642e-07 - val_mse: 7.8642e-07 Epoch 388/700 142/142 [==============================] - 0s 2ms/step - loss: 8.1339e-07 - mse: 8.1339e-07 - val_loss: 9.3165e-07 - val_mse: 9.3165e-07 Epoch 389/700 142/142 [==============================] - 0s 2ms/step - loss: 7.9526e-07 - mse: 7.9526e-07 - val_loss: 8.7384e-07 - val_mse: 8.7384e-07 Epoch 390/700 142/142 [==============================] - 0s 2ms/step - loss: 8.0117e-07 - mse: 8.0117e-07 - val_loss: 9.9136e-07 - val_mse: 9.9136e-07 Epoch 391/700 142/142 [==============================] - 0s 2ms/step - loss: 9.8207e-07 - mse: 9.8207e-07 - val_loss: 9.2749e-07 - val_mse: 9.2749e-07 Epoch 392/700 142/142 [==============================] - 0s 2ms/step - loss: 7.9797e-07 - mse: 7.9797e-07 - val_loss: 8.4860e-07 - val_mse: 8.4860e-07 Epoch 393/700 142/142 [==============================] - 0s 2ms/step - loss: 8.0356e-07 - mse: 8.0356e-07 - val_loss: 7.2040e-07 - val_mse: 7.2040e-07 Epoch 394/700 142/142 [==============================] - 0s 2ms/step - loss: 7.8661e-07 - mse: 7.8661e-07 - val_loss: 7.2646e-07 - val_mse: 7.2646e-07 Epoch 395/700 142/142 [==============================] - 0s 2ms/step - loss: 7.9513e-07 - mse: 7.9513e-07 - val_loss: 1.3510e-06 - val_mse: 1.3510e-06 Epoch 396/700 142/142 [==============================] - 0s 2ms/step - loss: 7.8165e-07 - mse: 7.8165e-07 - val_loss: 6.9141e-07 - val_mse: 6.9141e-07 Epoch 397/700 142/142 [==============================] - 0s 2ms/step - loss: 9.1431e-07 - mse: 9.1431e-07 - val_loss: 8.3900e-07 - val_mse: 8.3900e-07 Epoch 398/700 142/142 [==============================] - 0s 2ms/step - loss: 7.9190e-07 - mse: 7.9190e-07 - val_loss: 6.8331e-07 - val_mse: 6.8331e-07 Epoch 399/700 142/142 [==============================] - 0s 2ms/step - loss: 8.0279e-07 - mse: 8.0279e-07 - val_loss: 7.8488e-07 - val_mse: 7.8488e-07 Epoch 400/700 142/142 [==============================] - 0s 2ms/step - loss: 7.9721e-07 - mse: 7.9721e-07 - val_loss: 9.1833e-07 - val_mse: 9.1833e-07 Epoch 401/700 142/142 [==============================] - 0s 2ms/step - loss: 8.0846e-07 - mse: 8.0846e-07 - val_loss: 6.9048e-07 - val_mse: 6.9048e-07 Epoch 402/700 142/142 [==============================] - 0s 2ms/step - loss: 8.1808e-07 - mse: 8.1808e-07 - val_loss: 7.1429e-07 - val_mse: 7.1429e-07 Epoch 403/700 142/142 [==============================] - 0s 2ms/step - loss: 7.8865e-07 - mse: 7.8865e-07 - val_loss: 7.5931e-07 - val_mse: 7.5931e-07 Epoch 404/700 142/142 [==============================] - 0s 2ms/step - loss: 8.2620e-07 - mse: 8.2620e-07 - val_loss: 6.9002e-07 - val_mse: 6.9002e-07 Epoch 405/700 142/142 [==============================] - 0s 2ms/step - loss: 8.2065e-07 - mse: 8.2065e-07 - val_loss: 8.1378e-07 - val_mse: 8.1378e-07 Epoch 406/700 142/142 [==============================] - 0s 2ms/step - loss: 7.7963e-07 - mse: 7.7963e-07 - val_loss: 6.7222e-07 - val_mse: 6.7222e-07 Epoch 407/700 142/142 [==============================] - 0s 2ms/step - loss: 7.8245e-07 - mse: 7.8245e-07 - val_loss: 8.9109e-07 - val_mse: 8.9109e-07 Epoch 408/700 142/142 [==============================] - 0s 3ms/step - loss: 8.9069e-07 - mse: 8.9069e-07 - val_loss: 7.8400e-07 - val_mse: 7.8400e-07 Epoch 409/700 142/142 [==============================] - 0s 2ms/step - loss: 7.6608e-07 - mse: 7.6608e-07 - val_loss: 7.6462e-07 - val_mse: 7.6462e-07 Epoch 410/700 142/142 [==============================] - 0s 2ms/step - loss: 7.6096e-07 - mse: 7.6096e-07 - val_loss: 7.2256e-07 - val_mse: 7.2256e-07 Epoch 411/700 142/142 [==============================] - 0s 2ms/step - loss: 7.9382e-07 - mse: 7.9382e-07 - val_loss: 7.2781e-07 - val_mse: 7.2781e-07 Epoch 412/700 142/142 [==============================] - 0s 2ms/step - loss: 7.8251e-07 - mse: 7.8251e-07 - val_loss: 7.9406e-07 - val_mse: 7.9406e-07 Epoch 413/700 142/142 [==============================] - 0s 2ms/step - loss: 9.2212e-07 - mse: 9.2212e-07 - val_loss: 7.2621e-07 - val_mse: 7.2621e-07 Epoch 414/700 142/142 [==============================] - 0s 2ms/step - loss: 7.9333e-07 - mse: 7.9333e-07 - val_loss: 7.0332e-07 - val_mse: 7.0332e-07 Epoch 415/700 142/142 [==============================] - 0s 2ms/step - loss: 7.8477e-07 - mse: 7.8477e-07 - val_loss: 7.2635e-07 - val_mse: 7.2635e-07 Epoch 416/700 142/142 [==============================] - 0s 2ms/step - loss: 7.8288e-07 - mse: 7.8288e-07 - val_loss: 6.8243e-07 - val_mse: 6.8243e-07 Epoch 417/700 142/142 [==============================] - 0s 2ms/step - loss: 7.8530e-07 - mse: 7.8530e-07 - val_loss: 7.1214e-07 - val_mse: 7.1214e-07 Epoch 418/700 142/142 [==============================] - 0s 2ms/step - loss: 7.8924e-07 - mse: 7.8924e-07 - val_loss: 7.2192e-07 - val_mse: 7.2192e-07 Epoch 419/700 142/142 [==============================] - 0s 2ms/step - loss: 7.3717e-07 - mse: 7.3717e-07 - val_loss: 8.0350e-07 - val_mse: 8.0350e-07 Epoch 420/700 142/142 [==============================] - 0s 2ms/step - loss: 8.7653e-07 - mse: 8.7653e-07 - val_loss: 6.9436e-07 - val_mse: 6.9436e-07 Epoch 421/700 142/142 [==============================] - 0s 2ms/step - loss: 8.0163e-07 - mse: 8.0163e-07 - val_loss: 7.1498e-07 - val_mse: 7.1498e-07 Epoch 422/700 142/142 [==============================] - 0s 2ms/step - loss: 7.8169e-07 - mse: 7.8169e-07 - val_loss: 6.8436e-07 - val_mse: 6.8436e-07 Epoch 423/700 142/142 [==============================] - 0s 2ms/step - loss: 7.6661e-07 - mse: 7.6661e-07 - val_loss: 8.3236e-07 - val_mse: 8.3236e-07 Epoch 424/700 142/142 [==============================] - 0s 2ms/step - loss: 7.9550e-07 - mse: 7.9550e-07 - val_loss: 6.9059e-07 - val_mse: 6.9059e-07 Epoch 425/700 142/142 [==============================] - 0s 2ms/step - loss: 8.1769e-07 - mse: 8.1769e-07 - val_loss: 9.2912e-07 - val_mse: 9.2912e-07 Epoch 426/700 142/142 [==============================] - 0s 2ms/step - loss: 7.6582e-07 - mse: 7.6582e-07 - val_loss: 7.0654e-07 - val_mse: 7.0654e-07 Epoch 427/700 142/142 [==============================] - 0s 2ms/step - loss: 7.6347e-07 - mse: 7.6347e-07 - val_loss: 6.7957e-07 - val_mse: 6.7957e-07 Epoch 428/700 142/142 [==============================] - 0s 2ms/step - loss: 8.3617e-07 - mse: 8.3617e-07 - val_loss: 8.3662e-07 - val_mse: 8.3662e-07 Epoch 429/700 142/142 [==============================] - 0s 2ms/step - loss: 7.7096e-07 - mse: 7.7096e-07 - val_loss: 1.2459e-06 - val_mse: 1.2459e-06 Epoch 430/700 142/142 [==============================] - 0s 2ms/step - loss: 8.3982e-07 - mse: 8.3982e-07 - val_loss: 9.1565e-07 - val_mse: 9.1565e-07 Epoch 431/700 142/142 [==============================] - 0s 2ms/step - loss: 7.3283e-07 - mse: 7.3283e-07 - val_loss: 7.3437e-07 - val_mse: 7.3437e-07 Epoch 432/700 142/142 [==============================] - 0s 2ms/step - loss: 8.1090e-07 - mse: 8.1090e-07 - val_loss: 7.2025e-07 - val_mse: 7.2025e-07 Epoch 433/700 142/142 [==============================] - 0s 2ms/step - loss: 7.6253e-07 - mse: 7.6253e-07 - val_loss: 1.0691e-06 - val_mse: 1.0691e-06 Epoch 434/700 142/142 [==============================] - 0s 2ms/step - loss: 8.6449e-07 - mse: 8.6449e-07 - val_loss: 1.2133e-06 - val_mse: 1.2133e-06 Epoch 435/700 142/142 [==============================] - 0s 2ms/step - loss: 8.1130e-07 - mse: 8.1130e-07 - val_loss: 8.5053e-07 - val_mse: 8.5053e-07 Epoch 436/700 142/142 [==============================] - 0s 2ms/step - loss: 7.7218e-07 - mse: 7.7218e-07 - val_loss: 7.5876e-07 - val_mse: 7.5876e-07 Epoch 437/700 142/142 [==============================] - 0s 2ms/step - loss: 7.6400e-07 - mse: 7.6400e-07 - val_loss: 8.1241e-07 - val_mse: 8.1241e-07 Epoch 438/700 142/142 [==============================] - 0s 2ms/step - loss: 7.5659e-07 - mse: 7.5659e-07 - val_loss: 8.0431e-07 - val_mse: 8.0431e-07 Epoch 439/700 142/142 [==============================] - 0s 2ms/step - loss: 7.5098e-07 - mse: 7.5098e-07 - val_loss: 6.8856e-07 - val_mse: 6.8856e-07 Epoch 440/700 142/142 [==============================] - 0s 2ms/step - loss: 8.9272e-07 - mse: 8.9272e-07 - val_loss: 1.0547e-06 - val_mse: 1.0547e-06 Epoch 441/700 142/142 [==============================] - 0s 2ms/step - loss: 7.6080e-07 - mse: 7.6080e-07 - val_loss: 7.4244e-07 - val_mse: 7.4244e-07 Epoch 442/700 142/142 [==============================] - 0s 2ms/step - loss: 7.6332e-07 - mse: 7.6332e-07 - val_loss: 7.0513e-07 - val_mse: 7.0513e-07 Epoch 443/700 142/142 [==============================] - 0s 2ms/step - loss: 8.0069e-07 - mse: 8.0069e-07 - val_loss: 9.7753e-07 - val_mse: 9.7753e-07 Epoch 444/700 142/142 [==============================] - 0s 2ms/step - loss: 7.7858e-07 - mse: 7.7858e-07 - val_loss: 7.1466e-07 - val_mse: 7.1466e-07 Epoch 445/700 142/142 [==============================] - 0s 2ms/step - loss: 7.5866e-07 - mse: 7.5866e-07 - val_loss: 7.4751e-07 - val_mse: 7.4751e-07 Epoch 446/700 142/142 [==============================] - 0s 2ms/step - loss: 8.3050e-07 - mse: 8.3050e-07 - val_loss: 9.9756e-07 - val_mse: 9.9756e-07 Epoch 447/700 142/142 [==============================] - 0s 2ms/step - loss: 7.8022e-07 - mse: 7.8022e-07 - val_loss: 9.6815e-07 - val_mse: 9.6815e-07 Epoch 448/700 142/142 [==============================] - 0s 2ms/step - loss: 7.9787e-07 - mse: 7.9787e-07 - val_loss: 7.7960e-07 - val_mse: 7.7960e-07 Epoch 449/700 142/142 [==============================] - 0s 2ms/step - loss: 7.8741e-07 - mse: 7.8741e-07 - val_loss: 7.4019e-07 - val_mse: 7.4019e-07 Epoch 450/700 142/142 [==============================] - 0s 2ms/step - loss: 7.3668e-07 - mse: 7.3668e-07 - val_loss: 8.1616e-07 - val_mse: 8.1616e-07 Epoch 451/700 142/142 [==============================] - 0s 2ms/step - loss: 7.8408e-07 - mse: 7.8408e-07 - val_loss: 7.2212e-07 - val_mse: 7.2212e-07 Epoch 452/700 142/142 [==============================] - 0s 2ms/step - loss: 8.8902e-07 - mse: 8.8902e-07 - val_loss: 1.8286e-06 - val_mse: 1.8286e-06 Epoch 453/700 142/142 [==============================] - 0s 2ms/step - loss: 8.5426e-07 - mse: 8.5426e-07 - val_loss: 7.7100e-07 - val_mse: 7.7100e-07 Epoch 454/700 142/142 [==============================] - 0s 3ms/step - loss: 7.7418e-07 - mse: 7.7418e-07 - val_loss: 7.5963e-07 - val_mse: 7.5963e-07 Epoch 455/700 142/142 [==============================] - 0s 3ms/step - loss: 7.7721e-07 - mse: 7.7721e-07 - val_loss: 8.6382e-07 - val_mse: 8.6382e-07 Epoch 456/700 142/142 [==============================] - 0s 2ms/step - loss: 7.4883e-07 - mse: 7.4883e-07 - val_loss: 8.3133e-07 - val_mse: 8.3133e-07 Epoch 00456: early stopping
<tensorflow.python.keras.callbacks.History at 0x7f1f00128150>
predictions = (model_SOE.predict(X_test_SOE))
print(mean_absolute_error(Y_test_SOE, predictions))
0.0007085477290306336
compare = pd.concat([pd.DataFrame(predictions), pd.DataFrame(Y_test_SOE)], axis=1)
compare.columns = ['Predictions', 'Actual Output']
compare
Predictions | Actual Output | |
---|---|---|
0 | 0.767613 | 0.768606 |
1 | 0.902220 | 0.902352 |
2 | 0.336005 | 0.335707 |
3 | 0.244512 | 0.242919 |
4 | 0.352368 | 0.352707 |
... | ... | ... |
23392 | 0.600694 | 0.600253 |
23393 | 0.766633 | 0.767576 |
23394 | 0.324048 | 0.324848 |
23395 | 0.191132 | 0.189838 |
23396 | 0.319280 | 0.320394 |
23397 rows × 2 columns
import tensorflowjs
model_SOC.save('/content/drive/MyDrive/Colab Notebooks/Projects/SOC & SOE Estimation/Model_SOC/model_soc.h5')
tensorflowjs.converters.save_keras_model(model_SOC, '/content/drive/MyDrive/Colab Notebooks/Projects/SOC & SOE Estimation/Model_SOC/JSON')
model_SOE.save('/content/drive/MyDrive/Colab Notebooks/Projects/SOC & SOE Estimation/Model_SOE/model_soe.h5')
tensorflowjs.converters.save_keras_model(model_SOE, '/content/drive/MyDrive/Colab Notebooks/Projects/SOC & SOE Estimation/Model_SOE/JSON')